albertvillanova HF staff commited on
Commit
0f2013a
1 Parent(s): 4b41f73

Delete loading script

Browse files
Files changed (1) hide show
  1. emotion.py +0 -88
emotion.py DELETED
@@ -1,88 +0,0 @@
1
- import json
2
-
3
- import datasets
4
- from datasets.tasks import TextClassification
5
-
6
-
7
- _CITATION = """\
8
- @inproceedings{saravia-etal-2018-carer,
9
- title = "{CARER}: Contextualized Affect Representations for Emotion Recognition",
10
- author = "Saravia, Elvis and
11
- Liu, Hsien-Chi Toby and
12
- Huang, Yen-Hao and
13
- Wu, Junlin and
14
- Chen, Yi-Shin",
15
- booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
16
- month = oct # "-" # nov,
17
- year = "2018",
18
- address = "Brussels, Belgium",
19
- publisher = "Association for Computational Linguistics",
20
- url = "https://www.aclweb.org/anthology/D18-1404",
21
- doi = "10.18653/v1/D18-1404",
22
- pages = "3687--3697",
23
- abstract = "Emotions are expressed in nuanced ways, which varies by collective or individual experiences, knowledge, and beliefs. Therefore, to understand emotion, as conveyed through text, a robust mechanism capable of capturing and modeling different linguistic nuances and phenomena is needed. We propose a semi-supervised, graph-based algorithm to produce rich structural descriptors which serve as the building blocks for constructing contextualized affect representations from text. The pattern-based representations are further enriched with word embeddings and evaluated through several emotion recognition tasks. Our experimental results demonstrate that the proposed method outperforms state-of-the-art techniques on emotion recognition tasks.",
24
- }
25
- """
26
-
27
- _DESCRIPTION = """\
28
- Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper.
29
- """
30
-
31
- _HOMEPAGE = "https://github.com/dair-ai/emotion_dataset"
32
-
33
- _LICENSE = "The dataset should be used for educational and research purposes only"
34
-
35
- _URLS = {
36
- "split": {
37
- "train": "data/train.jsonl.gz",
38
- "validation": "data/validation.jsonl.gz",
39
- "test": "data/test.jsonl.gz",
40
- },
41
- "unsplit": {
42
- "train": "data/data.jsonl.gz",
43
- },
44
- }
45
-
46
-
47
- class Emotion(datasets.GeneratorBasedBuilder):
48
- VERSION = datasets.Version("1.0.0")
49
- BUILDER_CONFIGS = [
50
- datasets.BuilderConfig(
51
- name="split", version=VERSION, description="Dataset split in train, validation and test"
52
- ),
53
- datasets.BuilderConfig(name="unsplit", version=VERSION, description="Unsplit dataset"),
54
- ]
55
- DEFAULT_CONFIG_NAME = "split"
56
-
57
- def _info(self):
58
- class_names = ["sadness", "joy", "love", "anger", "fear", "surprise"]
59
- return datasets.DatasetInfo(
60
- description=_DESCRIPTION,
61
- features=datasets.Features(
62
- {"text": datasets.Value("string"), "label": datasets.ClassLabel(names=class_names)}
63
- ),
64
- supervised_keys=("text", "label"),
65
- homepage=_HOMEPAGE,
66
- citation=_CITATION,
67
- license=_LICENSE,
68
- task_templates=[TextClassification(text_column="text", label_column="label")],
69
- )
70
-
71
- def _split_generators(self, dl_manager):
72
- """Returns SplitGenerators."""
73
- paths = dl_manager.download_and_extract(_URLS[self.config.name])
74
- if self.config.name == "split":
75
- return [
76
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]}),
77
- datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": paths["validation"]}),
78
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": paths["test"]}),
79
- ]
80
- else:
81
- return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": paths["train"]})]
82
-
83
- def _generate_examples(self, filepath):
84
- """Generate examples."""
85
- with open(filepath, encoding="utf-8") as f:
86
- for idx, line in enumerate(f):
87
- example = json.loads(line)
88
- yield idx, example