|
|
from accelerate.logging import get_logger |
|
|
import torch |
|
|
import io |
|
|
logger = get_logger(__name__) |
|
|
from PIL import Image |
|
|
from .condition import Condition |
|
|
from diffusers.image_processor import VaeImageProcessor |
|
|
from datasets import load_dataset, concatenate_datasets |
|
|
def get_dataset(args): |
|
|
dataset = [] |
|
|
assert isinstance(args.dataset_name,list),"dataset dir should be a list" |
|
|
if args.dataset_name is not None: |
|
|
for name in args.dataset_name: |
|
|
|
|
|
dataset.append(load_dataset(name,cache_dir=args.cache_dir,split='train')) |
|
|
dataset = concatenate_datasets(dataset) |
|
|
return dataset |
|
|
|
|
|
def prepare_dataset(dataset, vae_scale_factor, accelerator, args): |
|
|
image_processor = VaeImageProcessor(vae_scale_factor=vae_scale_factor * 2 ,do_resize=True,do_convert_rgb=True) |
|
|
|
|
|
def preprocess_conditions(conditions): |
|
|
conditioning_tensors = [] |
|
|
conditions_types = [] |
|
|
for cond in conditions: |
|
|
conditioning_tensors.append(image_processor.preprocess(cond.condition,width=args.resolution,height=args.resolution).squeeze(0)) |
|
|
conditions_types.append(cond.condition_type) |
|
|
return torch.stack(conditioning_tensors,dim=0),conditions_types |
|
|
def preprocess(examples): |
|
|
|
|
|
pixel_values =[] |
|
|
condition_latents=[] |
|
|
condition_types=[] |
|
|
bboxes = [] |
|
|
for image,bbox,canny,depth in zip(examples[args.image_column],examples[args.bbox_column],examples[args.canny_column],examples[args.depth_column]): |
|
|
image = image.convert("RGB") if not isinstance(image, str) else Image.open(image).convert("RGB") |
|
|
width, height = image.size |
|
|
|
|
|
if width % 2 != 0: |
|
|
raise ValueError("Image width must be even to split into two equal parts.") |
|
|
|
|
|
left_image = image.crop((0, 0, width // 2, height)) |
|
|
right_image = image.crop((width // 2, 0, width, height)) |
|
|
|
|
|
image_width,image_height = image.size |
|
|
bbox_pixel = [ |
|
|
bbox[0] * image_width, |
|
|
bbox[1] * image_height, |
|
|
bbox[2] * image_width, |
|
|
bbox[3] * image_height |
|
|
] |
|
|
left = bbox_pixel[0] - bbox_pixel[2] / 2 |
|
|
top = bbox_pixel[1] - bbox_pixel[3] / 2 |
|
|
right = bbox_pixel[0] + bbox_pixel[2] / 2 |
|
|
bottom = bbox_pixel[1] + bbox_pixel[3] / 2 |
|
|
masked_left_image = left_image.copy() |
|
|
masked_left_image.paste((0, 0, 0), (int(left), int(top), int(right), int(bottom))) |
|
|
bboxes.append([int(left*args.resolution/(width // 2)), int(top*args.resolution/height), int(right*args.resolution/(width // 2)), int(bottom*args.resolution/height)]) |
|
|
|
|
|
pixel_values.append(image_processor.preprocess(left_image,width=args.resolution,height=args.resolution).squeeze(0)) |
|
|
conditions = [] |
|
|
for condition_type in args.condition_types: |
|
|
if condition_type == "subject": |
|
|
conditions.append(Condition("subject", condition = right_image)) |
|
|
elif condition_type == "canny": |
|
|
conditions.append(Condition("canny", condition = Image.open(io.BytesIO(canny['bytes'])))) |
|
|
elif condition_type == "depth": |
|
|
conditions.append(Condition("depth", condition = Image.open(io.BytesIO(depth['bytes'])))) |
|
|
elif condition_type == "fill": |
|
|
conditions.append(Condition("fill", condition = masked_left_image)) |
|
|
else: |
|
|
raise ValueError("Only support for subject, canny, depth, fill") |
|
|
cond_tensors, cond_types = preprocess_conditions(conditions) |
|
|
condition_latents.append(cond_tensors) |
|
|
condition_types.append(cond_types) |
|
|
examples["pixel_values"] = pixel_values |
|
|
examples["condition_latents"] = condition_latents |
|
|
examples["condition_types"] = condition_types |
|
|
examples["bbox"]=bboxes |
|
|
return examples |
|
|
|
|
|
with accelerator.main_process_first(): |
|
|
dataset = dataset.with_transform(preprocess) |
|
|
|
|
|
return dataset |
|
|
|
|
|
def collate_fn(examples): |
|
|
pixel_values = torch.stack([example["pixel_values"] for example in examples]) |
|
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
|
condition_latents = torch.stack([example["condition_latents"] for example in examples]) |
|
|
condition_latents = condition_latents.to(memory_format=torch.contiguous_format).float() |
|
|
bboxes= [example["bbox"] for example in examples] |
|
|
condition_types= [example["condition_types"] for example in examples] |
|
|
descriptions = [example["description"]["description_0"] for example in examples] |
|
|
items = [example["description"]["item"] for example in examples] |
|
|
return {"pixel_values": pixel_values, "condition_latents": condition_latents, |
|
|
"condition_types":condition_types,"descriptions": descriptions, "bboxes": bboxes,"items":items} |
|
|
|
|
|
|