Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
semantic-similarity-classification
Languages:
English
Size:
1K - 10K
ArXiv:
License:
Commit
•
c2853bb
1
Parent(s):
bebe30d
Delete loading script
Browse files- medical_questions_pairs.py +0 -83
medical_questions_pairs.py
DELETED
@@ -1,83 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Medical Question Pairs (MQP) Dataset"""
|
16 |
-
|
17 |
-
|
18 |
-
import csv
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
# TODO: Add BibTeX citation
|
24 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
-
_CITATION = """\
|
26 |
-
@misc{mccreery2020effective,
|
27 |
-
title={Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs},
|
28 |
-
author={Clara H. McCreery and Namit Katariya and Anitha Kannan and Manish Chablani and Xavier Amatriain},
|
29 |
-
year={2020},
|
30 |
-
eprint={2008.13546},
|
31 |
-
archivePrefix={arXiv},
|
32 |
-
primaryClass={cs.IR}
|
33 |
-
}
|
34 |
-
"""
|
35 |
-
|
36 |
-
|
37 |
-
_DESCRIPTION = """\
|
38 |
-
This dataset consists of 3048 similar and dissimilar medical question pairs hand-generated and labeled by Curai's doctors.
|
39 |
-
"""
|
40 |
-
|
41 |
-
_HOMEPAGE = "https://github.com/curai/medical-question-pair-dataset"
|
42 |
-
|
43 |
-
_LICENSE = ""
|
44 |
-
|
45 |
-
|
46 |
-
_URL = "https://raw.githubusercontent.com/curai/medical-question-pair-dataset/master/mqp.csv"
|
47 |
-
|
48 |
-
|
49 |
-
class MedicalQuestionsPairs(datasets.GeneratorBasedBuilder):
|
50 |
-
"""Medical Question Pairs (MQP) Dataset"""
|
51 |
-
|
52 |
-
def _info(self):
|
53 |
-
features = datasets.Features(
|
54 |
-
{
|
55 |
-
"dr_id": datasets.Value("int32"),
|
56 |
-
"question_1": datasets.Value("string"),
|
57 |
-
"question_2": datasets.Value("string"),
|
58 |
-
"label": datasets.features.ClassLabel(num_classes=2, names=[0, 1]),
|
59 |
-
}
|
60 |
-
)
|
61 |
-
return datasets.DatasetInfo(
|
62 |
-
description=_DESCRIPTION,
|
63 |
-
features=features,
|
64 |
-
homepage=_HOMEPAGE,
|
65 |
-
license=_LICENSE,
|
66 |
-
citation=_CITATION,
|
67 |
-
)
|
68 |
-
|
69 |
-
def _split_generators(self, dl_manager):
|
70 |
-
data_file = dl_manager.download_and_extract(_URL)
|
71 |
-
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})]
|
72 |
-
|
73 |
-
def _generate_examples(self, filepath):
|
74 |
-
"""Yields examples."""
|
75 |
-
with open(filepath, encoding="utf-8") as f:
|
76 |
-
data = csv.reader(f)
|
77 |
-
for id_, row in enumerate(data):
|
78 |
-
yield id_, {
|
79 |
-
"dr_id": row[0],
|
80 |
-
"question_1": row[1],
|
81 |
-
"question_2": row[2],
|
82 |
-
"label": row[3],
|
83 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|