Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
semantic-similarity-classification
Languages:
English
Size:
1K - 10K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Medical Question Pairs (MQP) Dataset""" | |
import csv | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@misc{mccreery2020effective, | |
title={Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs}, | |
author={Clara H. McCreery and Namit Katariya and Anitha Kannan and Manish Chablani and Xavier Amatriain}, | |
year={2020}, | |
eprint={2008.13546}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.IR} | |
} | |
""" | |
_DESCRIPTION = """\ | |
This dataset consists of 3048 similar and dissimilar medical question pairs hand-generated and labeled by Curai's doctors. | |
""" | |
_HOMEPAGE = "https://github.com/curai/medical-question-pair-dataset" | |
_LICENSE = "" | |
_URL = "https://raw.githubusercontent.com/curai/medical-question-pair-dataset/master/mqp.csv" | |
class MedicalQuestionsPairs(datasets.GeneratorBasedBuilder): | |
"""Medical Question Pairs (MQP) Dataset""" | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"dr_id": datasets.Value("int32"), | |
"question_1": datasets.Value("string"), | |
"question_2": datasets.Value("string"), | |
"label": datasets.features.ClassLabel(num_classes=2, names=[0, 1]), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
data_file = dl_manager.download_and_extract(_URL) | |
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
data = csv.reader(f) | |
for id_, row in enumerate(data): | |
yield id_, { | |
"dr_id": row[0], | |
"question_1": row[1], | |
"question_2": row[2], | |
"label": row[3], | |
} | |