|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""mMARCO Passage dataset.""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = "dataset load script for mMARCO bilingual-training datasets" |
|
|
|
languages = [ |
|
"spanish" |
|
] |
|
_DATASET_URLS = { |
|
lang: { |
|
'train': f"https://huggingface.co/datasets/crystina-z/mmarco-train-bi/resolve/main/{lang}.json.gz", |
|
} for lang in languages |
|
} |
|
|
|
|
|
class MMarcoPassage(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [datasets.BuilderConfig( |
|
version=datasets.Version("0.0.1"), |
|
name=lang, |
|
description=f"mMARCO bilingual-training datasets for {lang}" |
|
) for lang in languages |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
'query_id': datasets.Value('string'), |
|
'query_source': datasets.Value('string'), |
|
'query_target': datasets.Value('string'), |
|
'positive_passages_source': [ |
|
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} |
|
], |
|
'positive_passages_target': [ |
|
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} |
|
], |
|
'negative_passages_source': [ |
|
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} |
|
], |
|
'negative_passages_target': [ |
|
{'docid': datasets.Value('string'), 'title': datasets.Value('string'), 'text': datasets.Value('string')} |
|
] |
|
}) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage="", |
|
|
|
license="", |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
lang = self.config.name |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[lang]) |
|
''' |
|
if self.config.data_files: |
|
downloaded_files = self.config.data_files |
|
else: |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) |
|
''' |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else |
|
downloaded_files[split], |
|
}, |
|
) for split in downloaded_files |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, files): |
|
"""Yields examples.""" |
|
for filepath in files: |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
data = json.loads(line) |
|
if data.get('negative_passages_source') is None: |
|
data['negative_passages_source'] = [] |
|
data['negative_passages_target'] = [] |
|
if data.get('positive_passages_source') is None: |
|
data['positive_passages_source'] = [] |
|
data['positive_passages_target'] = [] |
|
yield data['query_id'], data |