|
import os.path as osp |
|
import glob |
|
import logging |
|
import insightface |
|
from insightface.model_zoo.model_zoo import ModelRouter, PickableInferenceSession |
|
from insightface.model_zoo.retinaface import RetinaFace |
|
from insightface.model_zoo.landmark import Landmark |
|
from insightface.model_zoo.attribute import Attribute |
|
from insightface.model_zoo.inswapper import INSwapper |
|
from insightface.model_zoo.arcface_onnx import ArcFaceONNX |
|
from insightface.app import FaceAnalysis |
|
from insightface.utils import DEFAULT_MP_NAME, ensure_available |
|
from insightface.model_zoo import model_zoo |
|
import onnxruntime |
|
import onnx |
|
from onnx import numpy_helper |
|
from scripts.logger import logger |
|
|
|
|
|
def patched_get_model(self, **kwargs): |
|
session = PickableInferenceSession(self.onnx_file, **kwargs) |
|
inputs = session.get_inputs() |
|
input_cfg = inputs[0] |
|
input_shape = input_cfg.shape |
|
outputs = session.get_outputs() |
|
|
|
if len(outputs) >= 5: |
|
return RetinaFace(model_file=self.onnx_file, session=session) |
|
elif input_shape[2] == 192 and input_shape[3] == 192: |
|
return Landmark(model_file=self.onnx_file, session=session) |
|
elif input_shape[2] == 96 and input_shape[3] == 96: |
|
return Attribute(model_file=self.onnx_file, session=session) |
|
elif len(inputs) == 2 and input_shape[2] == 128 and input_shape[3] == 128: |
|
return INSwapper(model_file=self.onnx_file, session=session) |
|
elif input_shape[2] == input_shape[3] and input_shape[2] >= 112 and input_shape[2] % 16 == 0: |
|
return ArcFaceONNX(model_file=self.onnx_file, session=session) |
|
else: |
|
return None |
|
|
|
|
|
def patched_faceanalysis_init(self, name=DEFAULT_MP_NAME, root='~/.insightface', allowed_modules=None, **kwargs): |
|
onnxruntime.set_default_logger_severity(3) |
|
self.models = {} |
|
self.model_dir = ensure_available('models', name, root=root) |
|
onnx_files = glob.glob(osp.join(self.model_dir, '*.onnx')) |
|
onnx_files = sorted(onnx_files) |
|
for onnx_file in onnx_files: |
|
model = model_zoo.get_model(onnx_file, **kwargs) |
|
if model is None: |
|
print('model not recognized:', onnx_file) |
|
elif allowed_modules is not None and model.taskname not in allowed_modules: |
|
print('model ignore:', onnx_file, model.taskname) |
|
del model |
|
elif model.taskname not in self.models and (allowed_modules is None or model.taskname in allowed_modules): |
|
self.models[model.taskname] = model |
|
else: |
|
print('duplicated model task type, ignore:', onnx_file, model.taskname) |
|
del model |
|
assert 'detection' in self.models |
|
self.det_model = self.models['detection'] |
|
|
|
|
|
def patched_faceanalysis_prepare(self, ctx_id, det_thresh=0.5, det_size=(640, 640)): |
|
self.det_thresh = det_thresh |
|
assert det_size is not None |
|
self.det_size = det_size |
|
for taskname, model in self.models.items(): |
|
if taskname == 'detection': |
|
model.prepare(ctx_id, input_size=det_size, det_thresh=det_thresh) |
|
else: |
|
model.prepare(ctx_id) |
|
|
|
|
|
def patched_inswapper_init(self, model_file=None, session=None): |
|
self.model_file = model_file |
|
self.session = session |
|
model = onnx.load(self.model_file) |
|
graph = model.graph |
|
self.emap = numpy_helper.to_array(graph.initializer[-1]) |
|
self.input_mean = 0.0 |
|
self.input_std = 255.0 |
|
if self.session is None: |
|
self.session = onnxruntime.InferenceSession(self.model_file, None) |
|
inputs = self.session.get_inputs() |
|
self.input_names = [] |
|
for inp in inputs: |
|
self.input_names.append(inp.name) |
|
outputs = self.session.get_outputs() |
|
output_names = [] |
|
for out in outputs: |
|
output_names.append(out.name) |
|
self.output_names = output_names |
|
assert len(self.output_names) == 1 |
|
input_cfg = inputs[0] |
|
input_shape = input_cfg.shape |
|
self.input_shape = input_shape |
|
self.input_size = tuple(input_shape[2:4][::-1]) |
|
|
|
|
|
def patch_insightface(get_model, faceanalysis_init, faceanalysis_prepare, inswapper_init): |
|
insightface.model_zoo.model_zoo.ModelRouter.get_model = get_model |
|
insightface.app.FaceAnalysis.__init__ = faceanalysis_init |
|
insightface.app.FaceAnalysis.prepare = faceanalysis_prepare |
|
insightface.model_zoo.inswapper.INSwapper.__init__ = inswapper_init |
|
|
|
|
|
original_functions = [ModelRouter.get_model, FaceAnalysis.__init__, FaceAnalysis.prepare, INSwapper.__init__] |
|
patched_functions = [patched_get_model, patched_faceanalysis_init, patched_faceanalysis_prepare, patched_inswapper_init] |
|
|
|
|
|
def apply_logging_patch(console_logging_level): |
|
if console_logging_level == 0: |
|
patch_insightface(*patched_functions) |
|
logger.setLevel(logging.WARNING) |
|
elif console_logging_level == 1: |
|
patch_insightface(*patched_functions) |
|
logger.setLevel(logging.INFO) |
|
elif console_logging_level == 2: |
|
patch_insightface(*original_functions) |
|
logger.setLevel(logging.INFO) |
|
|