|
import os |
|
import torch |
|
from torch import nn |
|
from copy import deepcopy |
|
import pathlib |
|
|
|
from custom_nodes.facerestore.facelib.utils import load_file_from_url |
|
from custom_nodes.facerestore.facelib.utils import download_pretrained_models |
|
from custom_nodes.facerestore.facelib.detection.yolov5face.models.common import Conv |
|
|
|
from .retinaface.retinaface import RetinaFace |
|
from .yolov5face.face_detector import YoloDetector |
|
|
|
|
|
def init_detection_model(model_name, half=False, device='cuda'): |
|
if 'retinaface' in model_name: |
|
model = init_retinaface_model(model_name, half, device) |
|
elif 'YOLOv5' in model_name: |
|
model = init_yolov5face_model(model_name, device) |
|
else: |
|
raise NotImplementedError(f'{model_name} is not implemented.') |
|
|
|
return model |
|
|
|
|
|
def init_retinaface_model(model_name, half=False, device='cuda'): |
|
if model_name == 'retinaface_resnet50': |
|
model = RetinaFace(network_name='resnet50', half=half) |
|
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth' |
|
elif model_name == 'retinaface_mobile0.25': |
|
model = RetinaFace(network_name='mobile0.25', half=half) |
|
model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth' |
|
else: |
|
raise NotImplementedError(f'{model_name} is not implemented.') |
|
|
|
model_path = load_file_from_url(url=model_url, model_dir='../../models/facedetection', progress=True, file_name=None) |
|
load_net = torch.load(model_path, map_location=lambda storage, loc: storage) |
|
|
|
for k, v in deepcopy(load_net).items(): |
|
if k.startswith('module.'): |
|
load_net[k[7:]] = v |
|
load_net.pop(k) |
|
model.load_state_dict(load_net, strict=True) |
|
model.eval() |
|
model = model.to(device) |
|
|
|
return model |
|
|
|
|
|
def init_yolov5face_model(model_name, device='cuda'): |
|
current_dir = str(pathlib.Path(__file__).parent.resolve()) |
|
if model_name == 'YOLOv5l': |
|
model = YoloDetector(config_name=current_dir+'/yolov5face/models/yolov5l.yaml', device=device) |
|
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5l-face.pth' |
|
elif model_name == 'YOLOv5n': |
|
model = YoloDetector(config_name=current_dir+'/yolov5face/models/yolov5n.yaml', device=device) |
|
model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/yolov5n-face.pth' |
|
else: |
|
raise NotImplementedError(f'{model_name} is not implemented.') |
|
|
|
model_path = load_file_from_url(url=model_url, model_dir='../../models/facedetection', progress=True, file_name=None) |
|
load_net = torch.load(model_path, map_location=lambda storage, loc: storage) |
|
model.detector.load_state_dict(load_net, strict=True) |
|
model.detector.eval() |
|
model.detector = model.detector.to(device).float() |
|
|
|
for m in model.detector.modules(): |
|
if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: |
|
m.inplace = True |
|
elif isinstance(m, Conv): |
|
m._non_persistent_buffers_set = set() |
|
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|