crystantine commited on
Commit
b60af16
·
verified ·
1 Parent(s): 1ba389d

Update latihsekarang.py

Browse files
Files changed (1) hide show
  1. latihsekarang.py +119 -219
latihsekarang.py CHANGED
@@ -1,24 +1,20 @@
1
  import os
2
- from huggingface_hub import whoami
3
- os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
4
- import sys
5
-
6
-
7
- sys.path.insert(0, os.getcwd())
8
-
9
- import gradio as gr
10
- from PIL import Image
11
- import torch
12
  import uuid
13
- import os
14
  import shutil
15
  import json
16
  import yaml
 
 
17
  from slugify import slugify
18
  from transformers import AutoProcessor, AutoModelForCausalLM
 
19
 
 
 
 
20
  sys.path.insert(0, "ai-toolkit")
21
  from toolkit.job import get_job
 
22
 
23
  MAX_IMAGES = 150
24
 
@@ -27,77 +23,57 @@ def load_captioning(uploaded_files, concept_sentence):
27
  txt_files = [file for file in uploaded_files if file.endswith('.txt')]
28
  txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
29
  updates = []
 
30
  if len(uploaded_images) <= 1:
31
- raise gr.Error(
32
- "Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
33
- )
34
  elif len(uploaded_images) > MAX_IMAGES:
35
- raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
36
- # Update for the captioning_area
37
- # for _ in range(3):
38
- updates.append(gr.update(visible=True))
39
- # Update visibility and image for each captioning row and image
40
  for i in range(1, MAX_IMAGES + 1):
41
- # Determine if the current row and image should be visible
42
  visible = i <= len(uploaded_images)
43
-
44
- # Update visibility of the captioning row
45
- updates.append(gr.update(visible=visible))
46
 
47
- # Update for image component - display image if available, otherwise hide
48
  image_value = uploaded_images[i - 1] if visible else None
49
- updates.append(gr.update(value=image_value, visible=visible))
50
-
51
  corresponding_caption = False
52
- if(image_value):
53
  base_name = os.path.splitext(os.path.basename(image_value))[0]
54
- print(base_name)
55
- print(image_value)
56
  if base_name in txt_files_dict:
57
- print("entrou")
58
  with open(txt_files_dict[base_name], 'r') as file:
59
  corresponding_caption = file.read()
60
-
61
- # Update value of captioning area
62
  text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
63
- updates.append(gr.update(value=text_value, visible=visible))
64
-
65
- # Update for the sample caption area
66
- updates.append(gr.update(visible=True))
67
- # Update prompt samples
68
- updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
69
- updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
70
- updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall"))
71
- updates.append(gr.update(visible=True))
72
  return updates
73
 
74
  def hide_captioning():
75
- return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
76
 
77
- def create_dataset(*inputs):
78
- print("Creating dataset")
79
- images = inputs[0]
80
- destination_folder = str(f"datasets/{uuid.uuid4()}")
81
- if not os.path.exists(destination_folder):
82
- os.makedirs(destination_folder)
83
 
84
  jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
85
  with open(jsonl_file_path, "a") as jsonl_file:
86
  for index, image in enumerate(images):
87
  new_image_path = shutil.copy(image, destination_folder)
88
-
89
- original_caption = inputs[index + 1]
90
  file_name = os.path.basename(new_image_path)
91
-
92
  data = {"file_name": file_name, "prompt": original_caption}
93
-
94
  jsonl_file.write(json.dumps(data) + "\n")
95
 
96
  return destination_folder
97
 
98
-
99
  def run_captioning(images, concept_sentence, *captions):
100
- #Load internally to not consume resources for training
101
  device = "cuda" if torch.cuda.is_available() else "cpu"
102
  torch_dtype = torch.float16
103
  model = AutoModelForCausalLM.from_pretrained(
@@ -107,8 +83,7 @@ def run_captioning(images, concept_sentence, *captions):
107
 
108
  captions = list(captions)
109
  for i, image_path in enumerate(images):
110
- print(captions[i])
111
- if isinstance(image_path, str): # If image is a file path
112
  image = Image.open(image_path).convert("RGB")
113
 
114
  prompt = "<DETAILED_CAPTION>"
@@ -157,25 +132,22 @@ def start_training(
157
  ):
158
  push_to_hub = True
159
  if not lora_name:
160
- raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
161
  try:
162
  if whoami()["auth"]["accessToken"]["role"] == "write" or "repo.write" in whoami()["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]:
163
- gr.Info(f"Starting training locally {whoami()['name']}. Your LoRA will be available locally and in Hugging Face after it finishes.")
164
  else:
165
  push_to_hub = False
166
- gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
167
  except:
168
  push_to_hub = False
169
- gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
170
-
171
- print("Started training")
172
  slugged_lora_name = slugify(lora_name)
173
 
174
- # Load the default config
175
  with open("config/examples/train_lora_flux_24gb.yaml", "r") as f:
176
  config = yaml.safe_load(f)
177
 
178
- # Update the config with user inputs
179
  config["config"]["name"] = slugged_lora_name
180
  config["config"]["process"][0]["model"]["low_vram"] = low_vram
181
  config["config"]["process"][0]["train"]["skip_first_sample"] = True
@@ -185,16 +157,16 @@ def start_training(
185
  config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
186
  config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
187
  config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub
188
- if(push_to_hub):
189
  try:
190
  username = whoami()["name"]
191
  except:
192
- raise gr.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?")
193
  config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
194
  config["config"]["process"][0]["save"]["hf_private"] = True
195
  if concept_sentence:
196
  config["config"]["process"][0]["trigger_word"] = concept_sentence
197
-
198
  if sample_1 or sample_2 or sample_3:
199
  config["config"]["process"][0]["train"]["disable_sampling"] = False
200
  config["config"]["process"][0]["sample"]["sample_every"] = steps
@@ -208,24 +180,20 @@ def start_training(
208
  config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
209
  else:
210
  config["config"]["process"][0]["train"]["disable_sampling"] = True
211
- if(model_to_train == "schnell"):
212
  config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell"
213
  config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter"
214
  config["config"]["process"][0]["sample"]["sample_steps"] = 4
215
- if(use_more_advanced_options):
216
  more_advanced_options_dict = yaml.safe_load(more_advanced_options)
217
  config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
218
- print(config)
219
-
220
- # Save the updated config
221
- # generate a random name for the config
222
  random_config_name = str(uuid.uuid4())
223
  os.makedirs("tmp", exist_ok=True)
224
  config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
225
  with open(config_path, "w") as f:
226
  yaml.dump(config, f)
227
-
228
- # run the job locally
229
  job = get_job(config_path)
230
  job.run()
231
  job.cleanup()
@@ -238,13 +206,13 @@ model:
238
  is_flux: true
239
  quantize: true
240
  network:
241
- linear: 16 #it will overcome the 'rank' parameter
242
- linear_alpha: 16 #you can have an alpha different than the ranking if you'd like
243
  type: lora
244
  sample:
245
  guidance_scale: 3.5
246
  height: 1024
247
- neg: '' #doesn't work for FLUX
248
  sample_every: 1000
249
  sample_steps: 28
250
  sampler: flowmatch
@@ -266,149 +234,81 @@ train:
266
  gradient_accumulation_steps: 1
267
  gradient_checkpointing: true
268
  noise_scheduler: flowmatch
269
- optimizer: adamw8bit #options: prodigy, dadaptation, adamw, adamw8bit, lion, lion8bit
270
- train_text_encoder: false #probably doesn't work for flux
271
  train_unet: true
272
  '''
273
 
274
- theme = gr.themes.Monochrome(
275
- text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
276
- font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"],
277
- )
278
- css = """
279
- h1{font-size: 2em}
280
- h3{margin-top: 0}
281
- #component-1{text-align:center}
282
- .main_ui_logged_out{opacity: 0.3; pointer-events: none}
283
- .tabitem{border: 0px}
284
- .group_padding{padding: .55em}
285
- """
286
- with gr.Blocks(theme=theme, css=css) as demo:
287
- gr.Markdown(
288
- """# LoRA Ease for FLUX 🧞‍♂️
289
- ### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit)"""
290
- )
291
- with gr.Column() as main_ui:
292
- with gr.Row():
293
- lora_name = gr.Textbox(
294
- label="The name of your LoRA",
295
- info="This has to be a unique name",
296
- placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
297
- )
298
- concept_sentence = gr.Textbox(
299
- label="Trigger word/sentence",
300
- info="Trigger word or sentence to be used",
301
- placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
302
- interactive=True,
303
- )
304
- with gr.Group(visible=True) as image_upload:
305
- with gr.Row():
306
- images = gr.File(
307
- file_types=["image", ".txt"],
308
- label="Upload your images",
309
- file_count="multiple",
310
- interactive=True,
311
- visible=True,
312
- scale=1,
313
- )
314
- with gr.Column(scale=3, visible=False) as captioning_area:
315
- with gr.Column():
316
- gr.Markdown(
317
- """# Custom captioning
318
- <p style="margin-top:0">You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word.</p>
319
- """, elem_classes="group_padding")
320
- do_captioning = gr.Button("Add AI captions with Florence-2")
321
- output_components = [captioning_area]
322
- caption_list = []
323
- for i in range(1, MAX_IMAGES + 1):
324
- locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
325
- with locals()[f"captioning_row_{i}"]:
326
- locals()[f"image_{i}"] = gr.Image(
327
- type="filepath",
328
- width=111,
329
- height=111,
330
- min_width=111,
331
- interactive=False,
332
- scale=2,
333
- show_label=False,
334
- show_share_button=False,
335
- show_download_button=False,
336
- )
337
- locals()[f"caption_{i}"] = gr.Textbox(
338
- label=f"Caption {i}", scale=15, interactive=True
339
- )
340
-
341
- output_components.append(locals()[f"captioning_row_{i}"])
342
- output_components.append(locals()[f"image_{i}"])
343
- output_components.append(locals()[f"caption_{i}"])
344
- caption_list.append(locals()[f"caption_{i}"])
345
-
346
- with gr.Accordion("Advanced options", open=False):
347
- steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
348
- lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
349
- rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
350
- model_to_train = gr.Radio(["dev", "schnell"], value="dev", label="Model to train")
351
- low_vram = gr.Checkbox(label="Low VRAM", value=True)
352
- with gr.Accordion("Even more advanced options", open=False):
353
- use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False)
354
- more_advanced_options = gr.Code(config_yaml, language="yaml")
355
-
356
- with gr.Accordion("Sample prompts (optional)", visible=False) as sample:
357
- gr.Markdown(
358
- "Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)"
359
- )
360
- sample_1 = gr.Textbox(label="Test prompt 1")
361
- sample_2 = gr.Textbox(label="Test prompt 2")
362
- sample_3 = gr.Textbox(label="Test prompt 3")
363
-
364
- output_components.append(sample)
365
- output_components.append(sample_1)
366
- output_components.append(sample_2)
367
- output_components.append(sample_3)
368
- start = gr.Button("Start training", visible=False)
369
- output_components.append(start)
370
- progress_area = gr.Markdown("")
371
-
372
- dataset_folder = gr.State()
373
-
374
- images.upload(
375
- load_captioning,
376
- inputs=[images, concept_sentence],
377
- outputs=output_components
378
- )
379
-
380
- images.delete(
381
- load_captioning,
382
- inputs=[images, concept_sentence],
383
- outputs=output_components
384
- )
385
-
386
- images.clear(
387
- hide_captioning,
388
- outputs=[captioning_area, sample, start]
389
- )
390
-
391
- start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then(
392
- fn=start_training,
393
- inputs=[
394
- lora_name,
395
- concept_sentence,
396
- steps,
397
- lr,
398
- rank,
399
- model_to_train,
400
- low_vram,
401
- dataset_folder,
402
- sample_1,
403
- sample_2,
404
- sample_3,
405
- use_more_advanced_options,
406
- more_advanced_options
407
- ],
408
- outputs=progress_area,
409
- )
410
-
411
- do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
412
 
413
  if __name__ == "__main__":
414
- demo.launch(share=True, show_error=True)
 
1
  import os
 
 
 
 
 
 
 
 
 
 
2
  import uuid
 
3
  import shutil
4
  import json
5
  import yaml
6
+ import torch
7
+ from PIL import Image
8
  from slugify import slugify
9
  from transformers import AutoProcessor, AutoModelForCausalLM
10
+ import pinggy as pg
11
 
12
+ # Ensure the current working directory is in sys.path
13
+ import sys
14
+ sys.path.insert(0, os.getcwd())
15
  sys.path.insert(0, "ai-toolkit")
16
  from toolkit.job import get_job
17
+ from huggingface_hub import whoami
18
 
19
  MAX_IMAGES = 150
20
 
 
23
  txt_files = [file for file in uploaded_files if file.endswith('.txt')]
24
  txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
25
  updates = []
26
+
27
  if len(uploaded_images) <= 1:
28
+ raise pg.Error("Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)")
 
 
29
  elif len(uploaded_images) > MAX_IMAGES:
30
+ raise pg.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
31
+
32
+ updates.append(pg.Update(visible=True))
 
 
33
  for i in range(1, MAX_IMAGES + 1):
 
34
  visible = i <= len(uploaded_images)
35
+ updates.append(pg.Update(visible=visible))
 
 
36
 
 
37
  image_value = uploaded_images[i - 1] if visible else None
38
+ updates.append(pg.Update(value=image_value, visible=visible))
39
+
40
  corresponding_caption = False
41
+ if image_value:
42
  base_name = os.path.splitext(os.path.basename(image_value))[0]
 
 
43
  if base_name in txt_files_dict:
 
44
  with open(txt_files_dict[base_name], 'r') as file:
45
  corresponding_caption = file.read()
46
+
 
47
  text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
48
+ updates.append(pg.Update(value=text_value, visible=visible))
49
+
50
+ updates.append(pg.Update(visible=True))
51
+ updates.append(pg.Update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
52
+ updates.append(pg.Update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
53
+ updates.append(pg.Update(placeholder=f"A {concept_sentence} in a mall"))
54
+ updates.append(pg.Update(visible=True))
55
+
 
56
  return updates
57
 
58
  def hide_captioning():
59
+ return pg.Update(visible=False), pg.Update(visible=False), pg.Update(visible=False)
60
 
61
+ def create_dataset(images, *captions):
62
+ destination_folder = f"datasets/{uuid.uuid4()}"
63
+ os.makedirs(destination_folder, exist_ok=True)
 
 
 
64
 
65
  jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
66
  with open(jsonl_file_path, "a") as jsonl_file:
67
  for index, image in enumerate(images):
68
  new_image_path = shutil.copy(image, destination_folder)
69
+ original_caption = captions[index]
 
70
  file_name = os.path.basename(new_image_path)
 
71
  data = {"file_name": file_name, "prompt": original_caption}
 
72
  jsonl_file.write(json.dumps(data) + "\n")
73
 
74
  return destination_folder
75
 
 
76
  def run_captioning(images, concept_sentence, *captions):
 
77
  device = "cuda" if torch.cuda.is_available() else "cpu"
78
  torch_dtype = torch.float16
79
  model = AutoModelForCausalLM.from_pretrained(
 
83
 
84
  captions = list(captions)
85
  for i, image_path in enumerate(images):
86
+ if isinstance(image_path, str):
 
87
  image = Image.open(image_path).convert("RGB")
88
 
89
  prompt = "<DETAILED_CAPTION>"
 
132
  ):
133
  push_to_hub = True
134
  if not lora_name:
135
+ raise pg.Error("You forgot to insert your LoRA name! This name has to be unique.")
136
  try:
137
  if whoami()["auth"]["accessToken"]["role"] == "write" or "repo.write" in whoami()["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]:
138
+ pg.Info(f"Starting training locally {whoami()['name']}. Your LoRA will be available locally and in Hugging Face after it finishes.")
139
  else:
140
  push_to_hub = False
141
+ pg.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
142
  except:
143
  push_to_hub = False
144
+ pg.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
145
+
 
146
  slugged_lora_name = slugify(lora_name)
147
 
 
148
  with open("config/examples/train_lora_flux_24gb.yaml", "r") as f:
149
  config = yaml.safe_load(f)
150
 
 
151
  config["config"]["name"] = slugged_lora_name
152
  config["config"]["process"][0]["model"]["low_vram"] = low_vram
153
  config["config"]["process"][0]["train"]["skip_first_sample"] = True
 
157
  config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
158
  config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
159
  config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub
160
+ if push_to_hub:
161
  try:
162
  username = whoami()["name"]
163
  except:
164
+ raise pg.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?")
165
  config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
166
  config["config"]["process"][0]["save"]["hf_private"] = True
167
  if concept_sentence:
168
  config["config"]["process"][0]["trigger_word"] = concept_sentence
169
+
170
  if sample_1 or sample_2 or sample_3:
171
  config["config"]["process"][0]["train"]["disable_sampling"] = False
172
  config["config"]["process"][0]["sample"]["sample_every"] = steps
 
180
  config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
181
  else:
182
  config["config"]["process"][0]["train"]["disable_sampling"] = True
183
+ if model_to_train == "schnell":
184
  config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell"
185
  config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter"
186
  config["config"]["process"][0]["sample"]["sample_steps"] = 4
187
+ if use_more_advanced_options:
188
  more_advanced_options_dict = yaml.safe_load(more_advanced_options)
189
  config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
190
+
 
 
 
191
  random_config_name = str(uuid.uuid4())
192
  os.makedirs("tmp", exist_ok=True)
193
  config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
194
  with open(config_path, "w") as f:
195
  yaml.dump(config, f)
196
+
 
197
  job = get_job(config_path)
198
  job.run()
199
  job.cleanup()
 
206
  is_flux: true
207
  quantize: true
208
  network:
209
+ linear: 16
210
+ linear_alpha: 16
211
  type: lora
212
  sample:
213
  guidance_scale: 3.5
214
  height: 1024
215
+ neg: ''
216
  sample_every: 1000
217
  sample_steps: 28
218
  sampler: flowmatch
 
234
  gradient_accumulation_steps: 1
235
  gradient_checkpointing: true
236
  noise_scheduler: flowmatch
237
+ optimizer: adamw8bit
238
+ train_text_encoder: false
239
  train_unet: true
240
  '''
241
 
242
+ def main():
243
+ with pg.App() as app:
244
+ app.add_page(title="LoRA Ease for FLUX", description="Train a high quality FLUX LoRA in a breeze")
245
+
246
+ app.add_textbox(
247
+ id="lora_name",
248
+ label="The name of your LoRA",
249
+ placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
250
+ )
251
+ app.add_textbox(
252
+ id="concept_sentence",
253
+ label="Trigger word/sentence",
254
+ placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
255
+ )
256
+
257
+ image_upload = app.add_file_upload(
258
+ id="images",
259
+ label="Upload your images",
260
+ file_types=["image", ".txt"],
261
+ multiple=True,
262
+ )
263
+
264
+ captioning_area = app.add_container(id="captioning_area", visible=False)
265
+ captioning_area.add_text("Custom captioning")
266
+ do_captioning = app.add_button("Add AI captions with Florence-2", id="do_captioning")
267
+
268
+ for i in range(1, MAX_IMAGES + 1):
269
+ with captioning_area.add_row(id=f"captioning_row_{i}", visible=False) as row:
270
+ row.add_image(id=f"image_{i}", width=111, height=111, visible=False)
271
+ row.add_textbox(id=f"caption_{i}", label=f"Caption {i}")
272
+
273
+ app.add_accordion(title="Advanced options", open=False)
274
+ app.add_number(id="steps", label="Steps", value=1000, min=1, max=10000)
275
+ app.add_number(id="lr", label="Learning Rate", value=4e-4, min=1e-6, max=1e-3)
276
+ app.add_number(id="rank", label="LoRA Rank", value=16, min=4, max=128)
277
+ app.add_radio(id="model_to_train", options=["dev", "schnell"], value="dev", label="Model to train")
278
+ app.add_checkbox(id="low_vram", label="Low VRAM", value=True)
279
+
280
+ with app.add_accordion(title="Even more advanced options", open=False):
281
+ app.add_checkbox(id="use_more_advanced_options", label="Use more advanced options", value=False)
282
+ app.add_code(id="more_advanced_options", value=config_yaml, language="yaml")
283
+
284
+ app.add_accordion(title="Sample prompts (optional)", visible=False)
285
+ app.add_textbox(id="sample_1", label="Test prompt 1")
286
+ app.add_textbox(id="sample_2", label="Test prompt 2")
287
+ app.add_textbox(id="sample_3", label="Test prompt 3")
288
+
289
+ start = app.add_button("Start training", id="start", visible=False)
290
+ progress_area = app.add_text("")
291
+
292
+ app.on_upload(id="images", fn=load_captioning, inputs=["images", "concept_sentence"], outputs=["captioning_area", "sample", "start"])
293
+ app.on_click(id="do_captioning", fn=run_captioning, inputs=["images", "concept_sentence"] + [f"caption_{i}" for i in range(1, MAX_IMAGES + 1)], outputs=[f"caption_{i}" for i in range(1, MAX_IMAGES + 1)])
294
+ app.on_click(id="start", fn=create_dataset, inputs=["images"] + [f"caption_{i}" for i in range(1, MAX_IMAGES + 1)], outputs=["dataset_folder"])
295
+ app.on_click(id="start", fn=start_training, inputs=[
296
+ "lora_name",
297
+ "concept_sentence",
298
+ "steps",
299
+ "lr",
300
+ "rank",
301
+ "model_to_train",
302
+ "low_vram",
303
+ "dataset_folder",
304
+ "sample_1",
305
+ "sample_2",
306
+ "sample_3",
307
+ "use_more_advanced_options",
308
+ "more_advanced_options"
309
+ ], outputs=["progress_area"])
310
+
311
+ app.run()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312
 
313
  if __name__ == "__main__":
314
+ main()