|
|
|
|
|
from typing import * |
|
|
|
import numpy as np |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import torch.linalg as linalg |
|
|
|
from tqdm import tqdm |
|
from collections import OrderedDict |
|
|
|
|
|
def make_sparse(t: torch.Tensor, sparsity=0.95): |
|
abs_t = torch.abs(t) |
|
np_array = abs_t.detach().cpu().numpy() |
|
quan = float(np.quantile(np_array, sparsity)) |
|
sparse_t = t.masked_fill(abs_t < quan, 0) |
|
return sparse_t |
|
|
|
|
|
def extract_conv( |
|
weight: Union[torch.Tensor, nn.Parameter], |
|
mode='fixed', |
|
mode_param=0, |
|
device='cpu', |
|
is_cp=False, |
|
) -> Tuple[nn.Parameter, nn.Parameter]: |
|
weight = weight.to(device) |
|
out_ch, in_ch, kernel_size, _ = weight.shape |
|
|
|
U, S, Vh = linalg.svd(weight.reshape(out_ch, -1)) |
|
|
|
if mode == 'fixed': |
|
lora_rank = mode_param |
|
elif mode == 'threshold': |
|
assert mode_param >= 0 |
|
lora_rank = torch.sum(S > mode_param) |
|
elif mode == 'ratio': |
|
assert 1 >= mode_param >= 0 |
|
min_s = torch.max(S) * mode_param |
|
lora_rank = torch.sum(S > min_s) |
|
elif mode == 'quantile' or mode == 'percentile': |
|
assert 1 >= mode_param >= 0 |
|
s_cum = torch.cumsum(S, dim=0) |
|
min_cum_sum = mode_param * torch.sum(S) |
|
lora_rank = torch.sum(s_cum < min_cum_sum) |
|
else: |
|
raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"') |
|
lora_rank = max(1, lora_rank) |
|
lora_rank = min(out_ch, in_ch, lora_rank) |
|
if lora_rank >= out_ch / 2 and not is_cp: |
|
return weight, 'full' |
|
|
|
U = U[:, :lora_rank] |
|
S = S[:lora_rank] |
|
U = U @ torch.diag(S) |
|
Vh = Vh[:lora_rank, :] |
|
|
|
diff = (weight - (U @ Vh).reshape(out_ch, in_ch, kernel_size, kernel_size)).detach() |
|
extract_weight_A = Vh.reshape(lora_rank, in_ch, kernel_size, kernel_size).detach() |
|
extract_weight_B = U.reshape(out_ch, lora_rank, 1, 1).detach() |
|
del U, S, Vh, weight |
|
return (extract_weight_A, extract_weight_B, diff), 'low rank' |
|
|
|
|
|
def extract_linear( |
|
weight: Union[torch.Tensor, nn.Parameter], |
|
mode='fixed', |
|
mode_param=0, |
|
device='cpu', |
|
) -> Tuple[nn.Parameter, nn.Parameter]: |
|
weight = weight.to(device) |
|
out_ch, in_ch = weight.shape |
|
|
|
U, S, Vh = linalg.svd(weight) |
|
|
|
if mode == 'fixed': |
|
lora_rank = mode_param |
|
elif mode == 'threshold': |
|
assert mode_param >= 0 |
|
lora_rank = torch.sum(S > mode_param) |
|
elif mode == 'ratio': |
|
assert 1 >= mode_param >= 0 |
|
min_s = torch.max(S) * mode_param |
|
lora_rank = torch.sum(S > min_s) |
|
elif mode == 'quantile' or mode == 'percentile': |
|
assert 1 >= mode_param >= 0 |
|
s_cum = torch.cumsum(S, dim=0) |
|
min_cum_sum = mode_param * torch.sum(S) |
|
lora_rank = torch.sum(s_cum < min_cum_sum) |
|
else: |
|
raise NotImplementedError('Extract mode should be "fixed", "threshold", "ratio" or "quantile"') |
|
lora_rank = max(1, lora_rank) |
|
lora_rank = min(out_ch, in_ch, lora_rank) |
|
if lora_rank >= out_ch / 2: |
|
return weight, 'full' |
|
|
|
U = U[:, :lora_rank] |
|
S = S[:lora_rank] |
|
U = U @ torch.diag(S) |
|
Vh = Vh[:lora_rank, :] |
|
|
|
diff = (weight - U @ Vh).detach() |
|
extract_weight_A = Vh.reshape(lora_rank, in_ch).detach() |
|
extract_weight_B = U.reshape(out_ch, lora_rank).detach() |
|
del U, S, Vh, weight |
|
return (extract_weight_A, extract_weight_B, diff), 'low rank' |
|
|
|
|
|
def extract_diff( |
|
base_model, |
|
db_model, |
|
mode='fixed', |
|
linear_mode_param=0, |
|
conv_mode_param=0, |
|
extract_device='cpu', |
|
use_bias=False, |
|
sparsity=0.98, |
|
small_conv=True, |
|
linear_only=False, |
|
extract_unet=True, |
|
extract_text_encoder=True, |
|
): |
|
meta = OrderedDict() |
|
|
|
UNET_TARGET_REPLACE_MODULE = [ |
|
"Transformer2DModel", |
|
"Attention", |
|
"ResnetBlock2D", |
|
"Downsample2D", |
|
"Upsample2D" |
|
] |
|
UNET_TARGET_REPLACE_NAME = [ |
|
"conv_in", |
|
"conv_out", |
|
"time_embedding.linear_1", |
|
"time_embedding.linear_2", |
|
] |
|
if linear_only: |
|
UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "Attention"] |
|
UNET_TARGET_REPLACE_NAME = [ |
|
"conv_in", |
|
"conv_out", |
|
] |
|
|
|
if not extract_unet: |
|
UNET_TARGET_REPLACE_MODULE = [] |
|
UNET_TARGET_REPLACE_NAME = [] |
|
|
|
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] |
|
|
|
if not extract_text_encoder: |
|
TEXT_ENCODER_TARGET_REPLACE_MODULE = [] |
|
|
|
LORA_PREFIX_UNET = 'lora_unet' |
|
LORA_PREFIX_TEXT_ENCODER = 'lora_te' |
|
|
|
def make_state_dict( |
|
prefix, |
|
root_module: torch.nn.Module, |
|
target_module: torch.nn.Module, |
|
target_replace_modules, |
|
target_replace_names=[] |
|
): |
|
loras = {} |
|
temp = {} |
|
temp_name = {} |
|
|
|
for name, module in root_module.named_modules(): |
|
if module.__class__.__name__ in target_replace_modules: |
|
temp[name] = {} |
|
for child_name, child_module in module.named_modules(): |
|
if child_module.__class__.__name__ not in {'Linear', 'LoRACompatibleLinear', 'Conv2d', 'LoRACompatibleConv'}: |
|
continue |
|
temp[name][child_name] = child_module.weight |
|
elif name in target_replace_names: |
|
temp_name[name] = module.weight |
|
|
|
for name, module in tqdm(list(target_module.named_modules())): |
|
if name in temp: |
|
weights = temp[name] |
|
for child_name, child_module in module.named_modules(): |
|
lora_name = prefix + '.' + name + '.' + child_name |
|
lora_name = lora_name.replace('.', '_') |
|
layer = child_module.__class__.__name__ |
|
if layer in {'Linear', 'LoRACompatibleLinear', 'Conv2d', 'LoRACompatibleConv'}: |
|
root_weight = child_module.weight |
|
if torch.allclose(root_weight, weights[child_name]): |
|
continue |
|
|
|
if layer == 'Linear' or layer == 'LoRACompatibleLinear': |
|
weight, decompose_mode = extract_linear( |
|
(child_module.weight - weights[child_name]), |
|
mode, |
|
linear_mode_param, |
|
device=extract_device, |
|
) |
|
if decompose_mode == 'low rank': |
|
extract_a, extract_b, diff = weight |
|
elif layer == 'Conv2d' or layer == 'LoRACompatibleConv': |
|
is_linear = (child_module.weight.shape[2] == 1 |
|
and child_module.weight.shape[3] == 1) |
|
if not is_linear and linear_only: |
|
continue |
|
weight, decompose_mode = extract_conv( |
|
(child_module.weight - weights[child_name]), |
|
mode, |
|
linear_mode_param if is_linear else conv_mode_param, |
|
device=extract_device, |
|
) |
|
if decompose_mode == 'low rank': |
|
extract_a, extract_b, diff = weight |
|
if small_conv and not is_linear and decompose_mode == 'low rank': |
|
dim = extract_a.size(0) |
|
(extract_c, extract_a, _), _ = extract_conv( |
|
extract_a.transpose(0, 1), |
|
'fixed', dim, |
|
extract_device, True |
|
) |
|
extract_a = extract_a.transpose(0, 1) |
|
extract_c = extract_c.transpose(0, 1) |
|
loras[f'{lora_name}.lora_mid.weight'] = extract_c.detach().cpu().contiguous().half() |
|
diff = child_module.weight - torch.einsum( |
|
'i j k l, j r, p i -> p r k l', |
|
extract_c, extract_a.flatten(1, -1), extract_b.flatten(1, -1) |
|
).detach().cpu().contiguous() |
|
del extract_c |
|
else: |
|
continue |
|
if decompose_mode == 'low rank': |
|
loras[f'{lora_name}.lora_down.weight'] = extract_a.detach().cpu().contiguous().half() |
|
loras[f'{lora_name}.lora_up.weight'] = extract_b.detach().cpu().contiguous().half() |
|
loras[f'{lora_name}.alpha'] = torch.Tensor([extract_a.shape[0]]).half() |
|
if use_bias: |
|
diff = diff.detach().cpu().reshape(extract_b.size(0), -1) |
|
sparse_diff = make_sparse(diff, sparsity).to_sparse().coalesce() |
|
|
|
indices = sparse_diff.indices().to(torch.int16) |
|
values = sparse_diff.values().half() |
|
loras[f'{lora_name}.bias_indices'] = indices |
|
loras[f'{lora_name}.bias_values'] = values |
|
loras[f'{lora_name}.bias_size'] = torch.tensor(diff.shape).to(torch.int16) |
|
del extract_a, extract_b, diff |
|
elif decompose_mode == 'full': |
|
loras[f'{lora_name}.diff'] = weight.detach().cpu().contiguous().half() |
|
else: |
|
raise NotImplementedError |
|
elif name in temp_name: |
|
weights = temp_name[name] |
|
lora_name = prefix + '.' + name |
|
lora_name = lora_name.replace('.', '_') |
|
layer = module.__class__.__name__ |
|
|
|
if layer in {'Linear', 'LoRACompatibleLinear', 'Conv2d', 'LoRACompatibleConv'}: |
|
root_weight = module.weight |
|
if torch.allclose(root_weight, weights): |
|
continue |
|
|
|
if layer == 'Linear' or layer == 'LoRACompatibleLinear': |
|
weight, decompose_mode = extract_linear( |
|
(root_weight - weights), |
|
mode, |
|
linear_mode_param, |
|
device=extract_device, |
|
) |
|
if decompose_mode == 'low rank': |
|
extract_a, extract_b, diff = weight |
|
elif layer == 'Conv2d' or layer == 'LoRACompatibleConv': |
|
is_linear = ( |
|
root_weight.shape[2] == 1 |
|
and root_weight.shape[3] == 1 |
|
) |
|
if not is_linear and linear_only: |
|
continue |
|
weight, decompose_mode = extract_conv( |
|
(root_weight - weights), |
|
mode, |
|
linear_mode_param if is_linear else conv_mode_param, |
|
device=extract_device, |
|
) |
|
if decompose_mode == 'low rank': |
|
extract_a, extract_b, diff = weight |
|
if small_conv and not is_linear and decompose_mode == 'low rank': |
|
dim = extract_a.size(0) |
|
(extract_c, extract_a, _), _ = extract_conv( |
|
extract_a.transpose(0, 1), |
|
'fixed', dim, |
|
extract_device, True |
|
) |
|
extract_a = extract_a.transpose(0, 1) |
|
extract_c = extract_c.transpose(0, 1) |
|
loras[f'{lora_name}.lora_mid.weight'] = extract_c.detach().cpu().contiguous().half() |
|
diff = root_weight - torch.einsum( |
|
'i j k l, j r, p i -> p r k l', |
|
extract_c, extract_a.flatten(1, -1), extract_b.flatten(1, -1) |
|
).detach().cpu().contiguous() |
|
del extract_c |
|
else: |
|
continue |
|
if decompose_mode == 'low rank': |
|
loras[f'{lora_name}.lora_down.weight'] = extract_a.detach().cpu().contiguous().half() |
|
loras[f'{lora_name}.lora_up.weight'] = extract_b.detach().cpu().contiguous().half() |
|
loras[f'{lora_name}.alpha'] = torch.Tensor([extract_a.shape[0]]).half() |
|
if use_bias: |
|
diff = diff.detach().cpu().reshape(extract_b.size(0), -1) |
|
sparse_diff = make_sparse(diff, sparsity).to_sparse().coalesce() |
|
|
|
indices = sparse_diff.indices().to(torch.int16) |
|
values = sparse_diff.values().half() |
|
loras[f'{lora_name}.bias_indices'] = indices |
|
loras[f'{lora_name}.bias_values'] = values |
|
loras[f'{lora_name}.bias_size'] = torch.tensor(diff.shape).to(torch.int16) |
|
del extract_a, extract_b, diff |
|
elif decompose_mode == 'full': |
|
loras[f'{lora_name}.diff'] = weight.detach().cpu().contiguous().half() |
|
else: |
|
raise NotImplementedError |
|
return loras |
|
|
|
text_encoder_loras = make_state_dict( |
|
LORA_PREFIX_TEXT_ENCODER, |
|
base_model[0], db_model[0], |
|
TEXT_ENCODER_TARGET_REPLACE_MODULE |
|
) |
|
|
|
unet_loras = make_state_dict( |
|
LORA_PREFIX_UNET, |
|
base_model[2], db_model[2], |
|
UNET_TARGET_REPLACE_MODULE, |
|
UNET_TARGET_REPLACE_NAME |
|
) |
|
print(len(text_encoder_loras), len(unet_loras)) |
|
|
|
return (text_encoder_loras | unet_loras), meta |
|
|
|
|
|
def get_module( |
|
lyco_state_dict: Dict, |
|
lora_name |
|
): |
|
if f'{lora_name}.lora_up.weight' in lyco_state_dict: |
|
up = lyco_state_dict[f'{lora_name}.lora_up.weight'] |
|
down = lyco_state_dict[f'{lora_name}.lora_down.weight'] |
|
mid = lyco_state_dict.get(f'{lora_name}.lora_mid.weight', None) |
|
alpha = lyco_state_dict.get(f'{lora_name}.alpha', None) |
|
return 'locon', (up, down, mid, alpha) |
|
elif f'{lora_name}.hada_w1_a' in lyco_state_dict: |
|
w1a = lyco_state_dict[f'{lora_name}.hada_w1_a'] |
|
w1b = lyco_state_dict[f'{lora_name}.hada_w1_b'] |
|
w2a = lyco_state_dict[f'{lora_name}.hada_w2_a'] |
|
w2b = lyco_state_dict[f'{lora_name}.hada_w2_b'] |
|
t1 = lyco_state_dict.get(f'{lora_name}.hada_t1', None) |
|
t2 = lyco_state_dict.get(f'{lora_name}.hada_t2', None) |
|
alpha = lyco_state_dict.get(f'{lora_name}.alpha', None) |
|
return 'hada', (w1a, w1b, w2a, w2b, t1, t2, alpha) |
|
elif f'{lora_name}.weight' in lyco_state_dict: |
|
weight = lyco_state_dict[f'{lora_name}.weight'] |
|
on_input = lyco_state_dict.get(f'{lora_name}.on_input', False) |
|
return 'ia3', (weight, on_input) |
|
elif (f'{lora_name}.lokr_w1' in lyco_state_dict |
|
or f'{lora_name}.lokr_w1_a' in lyco_state_dict): |
|
w1 = lyco_state_dict.get(f'{lora_name}.lokr_w1', None) |
|
w1a = lyco_state_dict.get(f'{lora_name}.lokr_w1_a', None) |
|
w1b = lyco_state_dict.get(f'{lora_name}.lokr_w1_b', None) |
|
w2 = lyco_state_dict.get(f'{lora_name}.lokr_w2', None) |
|
w2a = lyco_state_dict.get(f'{lora_name}.lokr_w2_a', None) |
|
w2b = lyco_state_dict.get(f'{lora_name}.lokr_w2_b', None) |
|
t1 = lyco_state_dict.get(f'{lora_name}.lokr_t1', None) |
|
t2 = lyco_state_dict.get(f'{lora_name}.lokr_t2', None) |
|
alpha = lyco_state_dict.get(f'{lora_name}.alpha', None) |
|
return 'kron', (w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha) |
|
elif f'{lora_name}.diff' in lyco_state_dict: |
|
return 'full', lyco_state_dict[f'{lora_name}.diff'] |
|
else: |
|
return 'None', () |
|
|
|
|
|
def cp_weight_from_conv( |
|
up, down, mid |
|
): |
|
up = up.reshape(up.size(0), up.size(1)) |
|
down = down.reshape(down.size(0), down.size(1)) |
|
return torch.einsum('m n w h, i m, n j -> i j w h', mid, up, down) |
|
|
|
|
|
def cp_weight( |
|
wa, wb, t |
|
): |
|
temp = torch.einsum('i j k l, j r -> i r k l', t, wb) |
|
return torch.einsum('i j k l, i r -> r j k l', temp, wa) |
|
|
|
|
|
@torch.no_grad() |
|
def rebuild_weight(module_type, params, orig_weight, scale=1): |
|
if orig_weight is None: |
|
return orig_weight |
|
merged = orig_weight |
|
if module_type == 'locon': |
|
up, down, mid, alpha = params |
|
if alpha is not None: |
|
scale *= alpha / up.size(1) |
|
if mid is not None: |
|
rebuild = cp_weight_from_conv(up, down, mid) |
|
else: |
|
rebuild = up.reshape(up.size(0), -1) @ down.reshape(down.size(0), -1) |
|
merged = orig_weight + rebuild.reshape(orig_weight.shape) * scale |
|
del up, down, mid, alpha, params, rebuild |
|
elif module_type == 'hada': |
|
w1a, w1b, w2a, w2b, t1, t2, alpha = params |
|
if alpha is not None: |
|
scale *= alpha / w1b.size(0) |
|
if t1 is not None: |
|
rebuild1 = cp_weight(w1a, w1b, t1) |
|
else: |
|
rebuild1 = w1a @ w1b |
|
if t2 is not None: |
|
rebuild2 = cp_weight(w2a, w2b, t2) |
|
else: |
|
rebuild2 = w2a @ w2b |
|
rebuild = (rebuild1 * rebuild2).reshape(orig_weight.shape) |
|
merged = orig_weight + rebuild * scale |
|
del w1a, w1b, w2a, w2b, t1, t2, alpha, params, rebuild, rebuild1, rebuild2 |
|
elif module_type == 'ia3': |
|
weight, on_input = params |
|
if not on_input: |
|
weight = weight.reshape(-1, 1) |
|
merged = orig_weight + weight * orig_weight * scale |
|
del weight, on_input, params |
|
elif module_type == 'kron': |
|
w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha = params |
|
if alpha is not None and (w1b is not None or w2b is not None): |
|
scale *= alpha / (w1b.size(0) if w1b else w2b.size(0)) |
|
if w1a is not None and w1b is not None: |
|
if t1: |
|
w1 = cp_weight(w1a, w1b, t1) |
|
else: |
|
w1 = w1a @ w1b |
|
if w2a is not None and w2b is not None: |
|
if t2: |
|
w2 = cp_weight(w2a, w2b, t2) |
|
else: |
|
w2 = w2a @ w2b |
|
rebuild = torch.kron(w1, w2).reshape(orig_weight.shape) |
|
merged = orig_weight + rebuild * scale |
|
del w1, w1a, w1b, w2, w2a, w2b, t1, t2, alpha, params, rebuild |
|
elif module_type == 'full': |
|
rebuild = params.reshape(orig_weight.shape) |
|
merged = orig_weight + rebuild * scale |
|
del params, rebuild |
|
|
|
return merged |
|
|
|
|
|
def merge( |
|
base_model, |
|
lyco_state_dict, |
|
scale: float = 1.0, |
|
device='cpu' |
|
): |
|
UNET_TARGET_REPLACE_MODULE = [ |
|
"Transformer2DModel", |
|
"Attention", |
|
"ResnetBlock2D", |
|
"Downsample2D", |
|
"Upsample2D" |
|
] |
|
UNET_TARGET_REPLACE_NAME = [ |
|
"conv_in", |
|
"conv_out", |
|
"time_embedding.linear_1", |
|
"time_embedding.linear_2", |
|
] |
|
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] |
|
LORA_PREFIX_UNET = 'lora_unet' |
|
LORA_PREFIX_TEXT_ENCODER = 'lora_te' |
|
merged = 0 |
|
|
|
def merge_state_dict( |
|
prefix, |
|
root_module: torch.nn.Module, |
|
lyco_state_dict: Dict[str, torch.Tensor], |
|
target_replace_modules, |
|
target_replace_names=[] |
|
): |
|
nonlocal merged |
|
for name, module in tqdm(list(root_module.named_modules()), desc=f'Merging {prefix}'): |
|
if module.__class__.__name__ in target_replace_modules: |
|
for child_name, child_module in module.named_modules(): |
|
if child_module.__class__.__name__ not in {'Linear', 'LoRACompatibleLinear', 'Conv2d', |
|
'LoRACompatibleConv'}: |
|
continue |
|
lora_name = prefix + '.' + name + '.' + child_name |
|
lora_name = lora_name.replace('.', '_') |
|
|
|
result = rebuild_weight(*get_module( |
|
lyco_state_dict, lora_name |
|
), getattr(child_module, 'weight'), scale) |
|
if result is not None: |
|
merged += 1 |
|
child_module.requires_grad_(False) |
|
child_module.weight.copy_(result) |
|
elif name in target_replace_names: |
|
lora_name = prefix + '.' + name |
|
lora_name = lora_name.replace('.', '_') |
|
|
|
result = rebuild_weight(*get_module( |
|
lyco_state_dict, lora_name |
|
), getattr(module, 'weight'), scale) |
|
if result is not None: |
|
merged += 1 |
|
module.requires_grad_(False) |
|
module.weight.copy_(result) |
|
|
|
if device == 'cpu': |
|
for k, v in tqdm(list(lyco_state_dict.items()), desc='Converting Dtype'): |
|
lyco_state_dict[k] = v.float() |
|
|
|
merge_state_dict( |
|
LORA_PREFIX_TEXT_ENCODER, |
|
base_model[0], |
|
lyco_state_dict, |
|
TEXT_ENCODER_TARGET_REPLACE_MODULE, |
|
UNET_TARGET_REPLACE_NAME |
|
) |
|
merge_state_dict( |
|
LORA_PREFIX_UNET, |
|
base_model[2], |
|
lyco_state_dict, |
|
UNET_TARGET_REPLACE_MODULE, |
|
UNET_TARGET_REPLACE_NAME |
|
) |
|
print(f'{merged} Modules been merged') |
|
|