alatlatihlora / toolkit /data_loader.py
crystantine's picture
Upload 190 files
1ba389d verified
import copy
import json
import os
import random
import traceback
from functools import lru_cache
from typing import List, TYPE_CHECKING
import cv2
import numpy as np
import torch
from PIL import Image
from PIL.ImageOps import exif_transpose
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from tqdm import tqdm
import albumentations as A
from toolkit.buckets import get_bucket_for_image_size, BucketResolution
from toolkit.config_modules import DatasetConfig, preprocess_dataset_raw_config
from toolkit.dataloader_mixins import CaptionMixin, BucketsMixin, LatentCachingMixin, Augments, CLIPCachingMixin
from toolkit.data_transfer_object.data_loader import FileItemDTO, DataLoaderBatchDTO
import platform
def is_native_windows():
return platform.system() == "Windows" and platform.release() != "2"
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
class RescaleTransform:
"""Transform to rescale images to the range [-1, 1]."""
def __call__(self, image):
return image * 2 - 1
class NormalizeSDXLTransform:
"""
Transforms the range from 0 to 1 to SDXL mean and std per channel based on avgs over thousands of images
Mean: tensor([ 0.0002, -0.1034, -0.1879])
Standard Deviation: tensor([0.5436, 0.5116, 0.5033])
"""
def __call__(self, image):
return transforms.Normalize(
mean=[0.0002, -0.1034, -0.1879],
std=[0.5436, 0.5116, 0.5033],
)(image)
class NormalizeSD15Transform:
"""
Transforms the range from 0 to 1 to SDXL mean and std per channel based on avgs over thousands of images
Mean: tensor([-0.1600, -0.2450, -0.3227])
Standard Deviation: tensor([0.5319, 0.4997, 0.5139])
"""
def __call__(self, image):
return transforms.Normalize(
mean=[-0.1600, -0.2450, -0.3227],
std=[0.5319, 0.4997, 0.5139],
)(image)
class ImageDataset(Dataset, CaptionMixin):
def __init__(self, config):
self.config = config
self.name = self.get_config('name', 'dataset')
self.path = self.get_config('path', required=True)
self.scale = self.get_config('scale', 1)
self.random_scale = self.get_config('random_scale', False)
self.include_prompt = self.get_config('include_prompt', False)
self.default_prompt = self.get_config('default_prompt', '')
if self.include_prompt:
self.caption_type = self.get_config('caption_ext', 'txt')
else:
self.caption_type = None
# we always random crop if random scale is enabled
self.random_crop = self.random_scale if self.random_scale else self.get_config('random_crop', False)
self.resolution = self.get_config('resolution', 256)
self.file_list = [os.path.join(self.path, file) for file in os.listdir(self.path) if
file.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]
# this might take a while
print(f" - Preprocessing image dimensions")
new_file_list = []
bad_count = 0
for file in tqdm(self.file_list):
img = Image.open(file)
if int(min(img.size) * self.scale) >= self.resolution:
new_file_list.append(file)
else:
bad_count += 1
self.file_list = new_file_list
print(f" - Found {len(self.file_list)} images")
print(f" - Found {bad_count} images that are too small")
assert len(self.file_list) > 0, f"no images found in {self.path}"
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
])
def get_config(self, key, default=None, required=False):
if key in self.config:
value = self.config[key]
return value
elif required:
raise ValueError(f'config file error. Missing "config.dataset.{key}" key')
else:
return default
def __len__(self):
return len(self.file_list)
def __getitem__(self, index):
img_path = self.file_list[index]
try:
img = exif_transpose(Image.open(img_path)).convert('RGB')
except Exception as e:
print(f"Error opening image: {img_path}")
print(e)
# make a noise image if we can't open it
img = Image.fromarray(np.random.randint(0, 255, (1024, 1024, 3), dtype=np.uint8))
# Downscale the source image first
img = img.resize((int(img.size[0] * self.scale), int(img.size[1] * self.scale)), Image.BICUBIC)
min_img_size = min(img.size)
if self.random_crop:
if self.random_scale and min_img_size > self.resolution:
if min_img_size < self.resolution:
print(
f"Unexpected values: min_img_size={min_img_size}, self.resolution={self.resolution}, image file={img_path}")
scale_size = self.resolution
else:
scale_size = random.randint(self.resolution, int(min_img_size))
scaler = scale_size / min_img_size
scale_width = int((img.width + 5) * scaler)
scale_height = int((img.height + 5) * scaler)
img = img.resize((scale_width, scale_height), Image.BICUBIC)
img = transforms.RandomCrop(self.resolution)(img)
else:
img = transforms.CenterCrop(min_img_size)(img)
img = img.resize((self.resolution, self.resolution), Image.BICUBIC)
img = self.transform(img)
if self.include_prompt:
prompt = self.get_caption_item(index)
return img, prompt
else:
return img
class AugmentedImageDataset(ImageDataset):
def __init__(self, config):
super().__init__(config)
self.augmentations = self.get_config('augmentations', [])
self.augmentations = [Augments(**aug) for aug in self.augmentations]
augmentation_list = []
for aug in self.augmentations:
# make sure method name is valid
assert hasattr(A, aug.method_name), f"invalid augmentation method: {aug.method_name}"
# get the method
method = getattr(A, aug.method_name)
# add the method to the list
augmentation_list.append(method(**aug.params))
self.aug_transform = A.Compose(augmentation_list)
self.original_transform = self.transform
# replace transform so we get raw pil image
self.transform = transforms.Compose([])
def __getitem__(self, index):
# get the original image
# image is a PIL image, convert to bgr
pil_image = super().__getitem__(index)
open_cv_image = np.array(pil_image)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
# apply augmentations
augmented = self.aug_transform(image=open_cv_image)["image"]
# convert back to RGB tensor
augmented = cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB)
# convert to PIL image
augmented = Image.fromarray(augmented)
# return both # return image as 0 - 1 tensor
return transforms.ToTensor()(pil_image), transforms.ToTensor()(augmented)
class PairedImageDataset(Dataset):
def __init__(self, config):
super().__init__()
self.config = config
self.size = self.get_config('size', 512)
self.path = self.get_config('path', None)
self.pos_folder = self.get_config('pos_folder', None)
self.neg_folder = self.get_config('neg_folder', None)
self.default_prompt = self.get_config('default_prompt', '')
self.network_weight = self.get_config('network_weight', 1.0)
self.pos_weight = self.get_config('pos_weight', self.network_weight)
self.neg_weight = self.get_config('neg_weight', self.network_weight)
supported_exts = ('.jpg', '.jpeg', '.png', '.webp', '.JPEG', '.JPG', '.PNG', '.WEBP')
if self.pos_folder is not None and self.neg_folder is not None:
# find matching files
self.pos_file_list = [os.path.join(self.pos_folder, file) for file in os.listdir(self.pos_folder) if
file.lower().endswith(supported_exts)]
self.neg_file_list = [os.path.join(self.neg_folder, file) for file in os.listdir(self.neg_folder) if
file.lower().endswith(supported_exts)]
matched_files = []
for pos_file in self.pos_file_list:
pos_file_no_ext = os.path.splitext(pos_file)[0]
for neg_file in self.neg_file_list:
neg_file_no_ext = os.path.splitext(neg_file)[0]
if os.path.basename(pos_file_no_ext) == os.path.basename(neg_file_no_ext):
matched_files.append((neg_file, pos_file))
break
# remove duplicates
matched_files = [t for t in (set(tuple(i) for i in matched_files))]
self.file_list = matched_files
print(f" - Found {len(self.file_list)} matching pairs")
else:
self.file_list = [os.path.join(self.path, file) for file in os.listdir(self.path) if
file.lower().endswith(supported_exts)]
print(f" - Found {len(self.file_list)} images")
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
])
def get_all_prompts(self):
prompts = []
for index in range(len(self.file_list)):
prompts.append(self.get_prompt_item(index))
# remove duplicates
prompts = list(set(prompts))
return prompts
def __len__(self):
return len(self.file_list)
def get_config(self, key, default=None, required=False):
if key in self.config:
value = self.config[key]
return value
elif required:
raise ValueError(f'config file error. Missing "config.dataset.{key}" key')
else:
return default
def get_prompt_item(self, index):
img_path_or_tuple = self.file_list[index]
if isinstance(img_path_or_tuple, tuple):
# check if either has a prompt file
path_no_ext = os.path.splitext(img_path_or_tuple[0])[0]
prompt_path = path_no_ext + '.txt'
if not os.path.exists(prompt_path):
path_no_ext = os.path.splitext(img_path_or_tuple[1])[0]
prompt_path = path_no_ext + '.txt'
else:
img_path = img_path_or_tuple
# see if prompt file exists
path_no_ext = os.path.splitext(img_path)[0]
prompt_path = path_no_ext + '.txt'
if os.path.exists(prompt_path):
with open(prompt_path, 'r', encoding='utf-8') as f:
prompt = f.read()
# remove any newlines
prompt = prompt.replace('\n', ', ')
# remove new lines for all operating systems
prompt = prompt.replace('\r', ', ')
prompt_split = prompt.split(',')
# remove empty strings
prompt_split = [p.strip() for p in prompt_split if p.strip()]
# join back together
prompt = ', '.join(prompt_split)
else:
prompt = self.default_prompt
return prompt
def __getitem__(self, index):
img_path_or_tuple = self.file_list[index]
if isinstance(img_path_or_tuple, tuple):
# load both images
img_path = img_path_or_tuple[0]
img1 = exif_transpose(Image.open(img_path)).convert('RGB')
img_path = img_path_or_tuple[1]
img2 = exif_transpose(Image.open(img_path)).convert('RGB')
# always use # 2 (pos)
bucket_resolution = get_bucket_for_image_size(
width=img2.width,
height=img2.height,
resolution=self.size,
# divisibility=self.
)
# images will be same base dimension, but may be trimmed. We need to shrink and then central crop
if bucket_resolution['width'] > bucket_resolution['height']:
img1_scale_to_height = bucket_resolution["height"]
img1_scale_to_width = int(img1.width * (bucket_resolution["height"] / img1.height))
img2_scale_to_height = bucket_resolution["height"]
img2_scale_to_width = int(img2.width * (bucket_resolution["height"] / img2.height))
else:
img1_scale_to_width = bucket_resolution["width"]
img1_scale_to_height = int(img1.height * (bucket_resolution["width"] / img1.width))
img2_scale_to_width = bucket_resolution["width"]
img2_scale_to_height = int(img2.height * (bucket_resolution["width"] / img2.width))
img1_crop_height = bucket_resolution["height"]
img1_crop_width = bucket_resolution["width"]
img2_crop_height = bucket_resolution["height"]
img2_crop_width = bucket_resolution["width"]
# scale then center crop images
img1 = img1.resize((img1_scale_to_width, img1_scale_to_height), Image.BICUBIC)
img1 = transforms.CenterCrop((img1_crop_height, img1_crop_width))(img1)
img2 = img2.resize((img2_scale_to_width, img2_scale_to_height), Image.BICUBIC)
img2 = transforms.CenterCrop((img2_crop_height, img2_crop_width))(img2)
# combine them side by side
img = Image.new('RGB', (img1.width + img2.width, max(img1.height, img2.height)))
img.paste(img1, (0, 0))
img.paste(img2, (img1.width, 0))
else:
img_path = img_path_or_tuple
img = exif_transpose(Image.open(img_path)).convert('RGB')
height = self.size
# determine width to keep aspect ratio
width = int(img.size[0] * height / img.size[1])
# Downscale the source image first
img = img.resize((width, height), Image.BICUBIC)
prompt = self.get_prompt_item(index)
img = self.transform(img)
return img, prompt, (self.neg_weight, self.pos_weight)
class AiToolkitDataset(LatentCachingMixin, CLIPCachingMixin, BucketsMixin, CaptionMixin, Dataset):
def __init__(
self,
dataset_config: 'DatasetConfig',
batch_size=1,
sd: 'StableDiffusion' = None,
):
super().__init__()
self.dataset_config = dataset_config
folder_path = dataset_config.folder_path
self.dataset_path = dataset_config.dataset_path
if self.dataset_path is None:
self.dataset_path = folder_path
self.is_caching_latents = dataset_config.cache_latents or dataset_config.cache_latents_to_disk
self.is_caching_latents_to_memory = dataset_config.cache_latents
self.is_caching_latents_to_disk = dataset_config.cache_latents_to_disk
self.is_caching_clip_vision_to_disk = dataset_config.cache_clip_vision_to_disk
self.epoch_num = 0
self.sd = sd
if self.sd is None and self.is_caching_latents:
raise ValueError(f"sd is required for caching latents")
self.caption_type = dataset_config.caption_ext
self.default_caption = dataset_config.default_caption
self.random_scale = dataset_config.random_scale
self.scale = dataset_config.scale
self.batch_size = batch_size
# we always random crop if random scale is enabled
self.random_crop = self.random_scale if self.random_scale else dataset_config.random_crop
self.resolution = dataset_config.resolution
self.caption_dict = None
self.file_list: List['FileItemDTO'] = []
# check if dataset_path is a folder or json
if os.path.isdir(self.dataset_path):
file_list = [os.path.join(root, file) for root, _, files in os.walk(self.dataset_path) for file in files if file.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]
else:
# assume json
with open(self.dataset_path, 'r') as f:
self.caption_dict = json.load(f)
# keys are file paths
file_list = list(self.caption_dict.keys())
if self.dataset_config.num_repeats > 1:
# repeat the list
file_list = file_list * self.dataset_config.num_repeats
if self.dataset_config.standardize_images:
if self.sd.is_xl or self.sd.is_vega or self.sd.is_ssd:
NormalizeMethod = NormalizeSDXLTransform
else:
NormalizeMethod = NormalizeSD15Transform
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
NormalizeMethod(),
])
else:
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
])
# this might take a while
print(f"Dataset: {self.dataset_path}")
print(f" - Preprocessing image dimensions")
dataset_folder = self.dataset_path
if not os.path.isdir(self.dataset_path):
dataset_folder = os.path.dirname(dataset_folder)
dataset_size_file = os.path.join(dataset_folder, '.aitk_size.json')
if os.path.exists(dataset_size_file):
with open(dataset_size_file, 'r') as f:
self.size_database = json.load(f)
else:
self.size_database = {}
bad_count = 0
for file in tqdm(file_list):
try:
file_item = FileItemDTO(
sd=self.sd,
path=file,
dataset_config=dataset_config,
dataloader_transforms=self.transform,
size_database=self.size_database,
)
self.file_list.append(file_item)
except Exception as e:
print(traceback.format_exc())
print(f"Error processing image: {file}")
print(e)
bad_count += 1
# save the size database
with open(dataset_size_file, 'w') as f:
json.dump(self.size_database, f)
print(f" - Found {len(self.file_list)} images")
# print(f" - Found {bad_count} images that are too small")
assert len(self.file_list) > 0, f"no images found in {self.dataset_path}"
# handle x axis flips
if self.dataset_config.flip_x:
print(" - adding x axis flips")
current_file_list = [x for x in self.file_list]
for file_item in current_file_list:
# create a copy that is flipped on the x axis
new_file_item = copy.deepcopy(file_item)
new_file_item.flip_x = True
self.file_list.append(new_file_item)
# handle y axis flips
if self.dataset_config.flip_y:
print(" - adding y axis flips")
current_file_list = [x for x in self.file_list]
for file_item in current_file_list:
# create a copy that is flipped on the y axis
new_file_item = copy.deepcopy(file_item)
new_file_item.flip_y = True
self.file_list.append(new_file_item)
if self.dataset_config.flip_x or self.dataset_config.flip_y:
print(f" - Found {len(self.file_list)} images after adding flips")
self.setup_epoch()
def setup_epoch(self):
if self.epoch_num == 0:
# initial setup
# do not call for now
if self.dataset_config.buckets:
# setup buckets
self.setup_buckets()
if self.is_caching_latents:
self.cache_latents_all_latents()
if self.is_caching_clip_vision_to_disk:
self.cache_clip_vision_to_disk()
else:
if self.dataset_config.poi is not None:
# handle cropping to a specific point of interest
# setup buckets every epoch
self.setup_buckets(quiet=True)
self.epoch_num += 1
def __len__(self):
if self.dataset_config.buckets:
return len(self.batch_indices)
return len(self.file_list)
def _get_single_item(self, index) -> 'FileItemDTO':
file_item = copy.deepcopy(self.file_list[index])
file_item.load_and_process_image(self.transform)
file_item.load_caption(self.caption_dict)
return file_item
def __getitem__(self, item):
if self.dataset_config.buckets:
# for buckets we collate ourselves for now
# todo allow a scheduler to dynamically make buckets
# we collate ourselves
if len(self.batch_indices) - 1 < item:
# tried everything to solve this. No way to reset length when redoing things. Pick another index
item = random.randint(0, len(self.batch_indices) - 1)
idx_list = self.batch_indices[item]
return [self._get_single_item(idx) for idx in idx_list]
else:
# Dataloader is batching
return self._get_single_item(item)
def get_dataloader_from_datasets(
dataset_options,
batch_size=1,
sd: 'StableDiffusion' = None,
) -> DataLoader:
if dataset_options is None or len(dataset_options) == 0:
return None
datasets = []
has_buckets = False
is_caching_latents = False
dataset_config_list = []
# preprocess them all
for dataset_option in dataset_options:
if isinstance(dataset_option, DatasetConfig):
dataset_config_list.append(dataset_option)
else:
# preprocess raw data
split_configs = preprocess_dataset_raw_config([dataset_option])
for x in split_configs:
dataset_config_list.append(DatasetConfig(**x))
for config in dataset_config_list:
if config.type == 'image':
dataset = AiToolkitDataset(config, batch_size=batch_size, sd=sd)
datasets.append(dataset)
if config.buckets:
has_buckets = True
if config.cache_latents or config.cache_latents_to_disk:
is_caching_latents = True
else:
raise ValueError(f"invalid dataset type: {config.type}")
concatenated_dataset = ConcatDataset(datasets)
# todo build scheduler that can get buckets from all datasets that match
# todo and evenly distribute reg images
def dto_collation(batch: List['FileItemDTO']):
# create DTO batch
batch = DataLoaderBatchDTO(
file_items=batch
)
return batch
# check if is caching latents
dataloader_kwargs = {}
if is_native_windows():
dataloader_kwargs['num_workers'] = 0
else:
dataloader_kwargs['num_workers'] = dataset_config_list[0].num_workers
dataloader_kwargs['prefetch_factor'] = dataset_config_list[0].prefetch_factor
if has_buckets:
# make sure they all have buckets
for dataset in datasets:
assert dataset.dataset_config.buckets, f"buckets not found on dataset {dataset.dataset_config.folder_path}, you either need all buckets or none"
data_loader = DataLoader(
concatenated_dataset,
batch_size=None, # we batch in the datasets for now
drop_last=False,
shuffle=True,
collate_fn=dto_collation, # Use the custom collate function
**dataloader_kwargs
)
else:
data_loader = DataLoader(
concatenated_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=dto_collation,
**dataloader_kwargs
)
return data_loader
def trigger_dataloader_setup_epoch(dataloader: DataLoader):
# hacky but needed because of different types of datasets and dataloaders
dataloader.len = None
if isinstance(dataloader.dataset, list):
for dataset in dataloader.dataset:
if hasattr(dataset, 'datasets'):
for sub_dataset in dataset.datasets:
if hasattr(sub_dataset, 'setup_epoch'):
sub_dataset.setup_epoch()
sub_dataset.len = None
elif hasattr(dataset, 'setup_epoch'):
dataset.setup_epoch()
dataset.len = None
elif hasattr(dataloader.dataset, 'setup_epoch'):
dataloader.dataset.setup_epoch()
dataloader.dataset.len = None
elif hasattr(dataloader.dataset, 'datasets'):
dataloader.dataset.len = None
for sub_dataset in dataloader.dataset.datasets:
if hasattr(sub_dataset, 'setup_epoch'):
sub_dataset.setup_epoch()
sub_dataset.len = None
def get_dataloader_datasets(dataloader: DataLoader):
# hacky but needed because of different types of datasets and dataloaders
if isinstance(dataloader.dataset, list):
datasets = []
for dataset in dataloader.dataset:
if hasattr(dataset, 'datasets'):
for sub_dataset in dataset.datasets:
datasets.append(sub_dataset)
else:
datasets.append(dataset)
return datasets
elif hasattr(dataloader.dataset, 'datasets'):
return dataloader.dataset.datasets
else:
return [dataloader.dataset]