|
|
|
|
|
import time |
|
from collections import OrderedDict |
|
import os |
|
from typing import Optional |
|
|
|
from toolkit.config_modules import SliderConfig |
|
from toolkit.paths import REPOS_ROOT |
|
import sys |
|
|
|
from toolkit.stable_diffusion_model import PromptEmbeds |
|
|
|
sys.path.append(REPOS_ROOT) |
|
sys.path.append(os.path.join(REPOS_ROOT, 'leco')) |
|
from toolkit.train_tools import get_torch_dtype, apply_noise_offset |
|
import gc |
|
from toolkit import train_tools |
|
|
|
import torch |
|
from leco import train_util, model_util |
|
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion |
|
|
|
|
|
class ACTION_TYPES_SLIDER: |
|
ERASE_NEGATIVE = 0 |
|
ENHANCE_NEGATIVE = 1 |
|
|
|
|
|
def flush(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
class EncodedPromptPair: |
|
def __init__( |
|
self, |
|
target_class, |
|
positive, |
|
negative, |
|
neutral, |
|
width=512, |
|
height=512, |
|
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE, |
|
multiplier=1.0, |
|
weight=1.0 |
|
): |
|
self.target_class = target_class |
|
self.positive = positive |
|
self.negative = negative |
|
self.neutral = neutral |
|
self.width = width |
|
self.height = height |
|
self.action: int = action |
|
self.multiplier = multiplier |
|
self.weight = weight |
|
|
|
|
|
class PromptEmbedsCache: |
|
prompts: dict[str, PromptEmbeds] = {} |
|
|
|
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None: |
|
self.prompts[__name] = __value |
|
|
|
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]: |
|
if __name in self.prompts: |
|
return self.prompts[__name] |
|
else: |
|
return None |
|
|
|
|
|
class EncodedAnchor: |
|
def __init__( |
|
self, |
|
prompt, |
|
neg_prompt, |
|
multiplier=1.0 |
|
): |
|
self.prompt = prompt |
|
self.neg_prompt = neg_prompt |
|
self.multiplier = multiplier |
|
|
|
|
|
class TrainSliderProcessOld(BaseSDTrainProcess): |
|
def __init__(self, process_id: int, job, config: OrderedDict): |
|
super().__init__(process_id, job, config) |
|
self.step_num = 0 |
|
self.start_step = 0 |
|
self.device = self.get_conf('device', self.job.device) |
|
self.device_torch = torch.device(self.device) |
|
self.slider_config = SliderConfig(**self.get_conf('slider', {})) |
|
self.prompt_cache = PromptEmbedsCache() |
|
self.prompt_pairs: list[EncodedPromptPair] = [] |
|
self.anchor_pairs: list[EncodedAnchor] = [] |
|
|
|
def before_model_load(self): |
|
pass |
|
|
|
def hook_before_train_loop(self): |
|
cache = PromptEmbedsCache() |
|
prompt_pairs: list[EncodedPromptPair] = [] |
|
|
|
|
|
with torch.no_grad(): |
|
neutral = "" |
|
for target in self.slider_config.targets: |
|
|
|
for prompt in [ |
|
target.target_class, |
|
target.positive, |
|
target.negative, |
|
neutral |
|
]: |
|
if cache[prompt] is None: |
|
cache[prompt] = self.sd.encode_prompt(prompt) |
|
for resolution in self.slider_config.resolutions: |
|
width, height = resolution |
|
only_erase = len(target.positive.strip()) == 0 |
|
only_enhance = len(target.negative.strip()) == 0 |
|
|
|
both = not only_erase and not only_enhance |
|
|
|
if only_erase and only_enhance: |
|
raise ValueError("target must have at least one of positive or negative or both") |
|
|
|
|
|
|
|
|
|
|
|
|
|
if both or only_erase: |
|
prompt_pairs += [ |
|
|
|
EncodedPromptPair( |
|
target_class=cache[target.target_class], |
|
positive=cache[target.positive], |
|
negative=cache[target.negative], |
|
neutral=cache[neutral], |
|
width=width, |
|
height=height, |
|
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE, |
|
multiplier=target.multiplier, |
|
weight=target.weight |
|
), |
|
] |
|
if both or only_enhance: |
|
prompt_pairs += [ |
|
|
|
EncodedPromptPair( |
|
target_class=cache[target.target_class], |
|
positive=cache[target.negative], |
|
negative=cache[target.positive], |
|
neutral=cache[neutral], |
|
width=width, |
|
height=height, |
|
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE, |
|
multiplier=target.multiplier, |
|
weight=target.weight |
|
), |
|
] |
|
if both: |
|
prompt_pairs += [ |
|
|
|
EncodedPromptPair( |
|
target_class=cache[target.target_class], |
|
positive=cache[target.negative], |
|
negative=cache[target.positive], |
|
neutral=cache[neutral], |
|
width=width, |
|
height=height, |
|
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE, |
|
multiplier=target.multiplier * -1.0, |
|
weight=target.weight |
|
), |
|
] |
|
prompt_pairs += [ |
|
|
|
EncodedPromptPair( |
|
target_class=cache[target.target_class], |
|
positive=cache[target.positive], |
|
negative=cache[target.negative], |
|
neutral=cache[neutral], |
|
width=width, |
|
height=height, |
|
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE, |
|
multiplier=target.multiplier * -1.0, |
|
weight=target.weight |
|
), |
|
] |
|
|
|
|
|
anchor_pairs = [] |
|
for anchor in self.slider_config.anchors: |
|
|
|
for prompt in [ |
|
anchor.prompt, |
|
anchor.neg_prompt |
|
]: |
|
if cache[prompt] == None: |
|
cache[prompt] = self.sd.encode_prompt(prompt) |
|
|
|
anchor_pairs += [ |
|
EncodedAnchor( |
|
prompt=cache[anchor.prompt], |
|
neg_prompt=cache[anchor.neg_prompt], |
|
multiplier=anchor.multiplier |
|
) |
|
] |
|
|
|
|
|
|
|
|
|
if isinstance(self.sd.text_encoder, list): |
|
for encoder in self.sd.text_encoder: |
|
encoder.to("cpu") |
|
else: |
|
self.sd.text_encoder.to("cpu") |
|
self.prompt_cache = cache |
|
self.prompt_pairs = prompt_pairs |
|
self.anchor_pairs = anchor_pairs |
|
flush() |
|
|
|
|
|
def hook_train_loop(self, batch): |
|
dtype = get_torch_dtype(self.train_config.dtype) |
|
|
|
|
|
prompt_pair: EncodedPromptPair = self.prompt_pairs[ |
|
torch.randint(0, len(self.prompt_pairs), (1,)).item() |
|
] |
|
|
|
height = prompt_pair.height |
|
width = prompt_pair.width |
|
target_class = prompt_pair.target_class |
|
neutral = prompt_pair.neutral |
|
negative = prompt_pair.negative |
|
positive = prompt_pair.positive |
|
weight = prompt_pair.weight |
|
multiplier = prompt_pair.multiplier |
|
|
|
unet = self.sd.unet |
|
noise_scheduler = self.sd.noise_scheduler |
|
optimizer = self.optimizer |
|
lr_scheduler = self.lr_scheduler |
|
loss_function = torch.nn.MSELoss() |
|
|
|
def get_noise_pred(p, n, gs, cts, dn): |
|
return self.sd.predict_noise( |
|
latents=dn, |
|
text_embeddings=train_tools.concat_prompt_embeddings( |
|
p, |
|
n, |
|
self.train_config.batch_size, |
|
), |
|
timestep=cts, |
|
guidance_scale=gs, |
|
) |
|
|
|
|
|
self.network.multiplier = multiplier |
|
|
|
with torch.no_grad(): |
|
self.sd.noise_scheduler.set_timesteps( |
|
self.train_config.max_denoising_steps, device=self.device_torch |
|
) |
|
|
|
self.optimizer.zero_grad() |
|
|
|
|
|
timesteps_to = torch.randint( |
|
1, self.train_config.max_denoising_steps, (1,) |
|
).item() |
|
|
|
|
|
noise = self.sd.get_latent_noise( |
|
pixel_height=height, |
|
pixel_width=width, |
|
batch_size=self.train_config.batch_size, |
|
noise_offset=self.train_config.noise_offset, |
|
).to(self.device_torch, dtype=dtype) |
|
|
|
|
|
latents = noise * self.sd.noise_scheduler.init_noise_sigma |
|
latents = latents.to(self.device_torch, dtype=dtype) |
|
|
|
with self.network: |
|
assert self.network.is_active |
|
self.network.multiplier = multiplier |
|
denoised_latents = self.sd.diffuse_some_steps( |
|
latents, |
|
train_tools.concat_prompt_embeddings( |
|
positive, |
|
target_class, |
|
self.train_config.batch_size, |
|
), |
|
start_timesteps=0, |
|
total_timesteps=timesteps_to, |
|
guidance_scale=3, |
|
) |
|
|
|
noise_scheduler.set_timesteps(1000) |
|
|
|
current_timestep = noise_scheduler.timesteps[ |
|
int(timesteps_to * 1000 / self.train_config.max_denoising_steps) |
|
] |
|
|
|
positive_latents = get_noise_pred( |
|
positive, negative, 1, current_timestep, denoised_latents |
|
).to("cpu", dtype=torch.float32) |
|
|
|
neutral_latents = get_noise_pred( |
|
positive, neutral, 1, current_timestep, denoised_latents |
|
).to("cpu", dtype=torch.float32) |
|
|
|
unconditional_latents = get_noise_pred( |
|
positive, positive, 1, current_timestep, denoised_latents |
|
).to("cpu", dtype=torch.float32) |
|
|
|
anchor_loss = None |
|
if len(self.anchor_pairs) > 0: |
|
|
|
anchor: EncodedAnchor = self.anchor_pairs[ |
|
torch.randint(0, len(self.anchor_pairs), (1,)).item() |
|
] |
|
with torch.no_grad(): |
|
anchor_target_noise = get_noise_pred( |
|
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents |
|
).to("cpu", dtype=torch.float32) |
|
with self.network: |
|
|
|
pos_nem_mult = 1.0 if prompt_pair.multiplier > 0 else -1.0 |
|
self.network.multiplier = anchor.multiplier * pos_nem_mult |
|
|
|
anchor_pred_noise = get_noise_pred( |
|
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents |
|
).to("cpu", dtype=torch.float32) |
|
|
|
self.network.multiplier = prompt_pair.multiplier |
|
|
|
with self.network: |
|
self.network.multiplier = prompt_pair.multiplier |
|
target_latents = get_noise_pred( |
|
positive, target_class, 1, current_timestep, denoised_latents |
|
).to("cpu", dtype=torch.float32) |
|
|
|
|
|
|
|
|
|
positive_latents.requires_grad = False |
|
neutral_latents.requires_grad = False |
|
unconditional_latents.requires_grad = False |
|
if len(self.anchor_pairs) > 0: |
|
anchor_target_noise.requires_grad = False |
|
anchor_loss = loss_function( |
|
anchor_target_noise, |
|
anchor_pred_noise, |
|
) |
|
erase = prompt_pair.action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE |
|
guidance_scale = 1.0 |
|
|
|
offset = guidance_scale * (positive_latents - unconditional_latents) |
|
|
|
offset_neutral = neutral_latents |
|
if erase: |
|
offset_neutral -= offset |
|
else: |
|
|
|
offset_neutral += offset |
|
|
|
loss = loss_function( |
|
target_latents, |
|
offset_neutral, |
|
) * weight |
|
|
|
loss_slide = loss.item() |
|
|
|
if anchor_loss is not None: |
|
loss += anchor_loss |
|
|
|
loss_float = loss.item() |
|
|
|
loss = loss.to(self.device_torch) |
|
|
|
loss.backward() |
|
optimizer.step() |
|
lr_scheduler.step() |
|
|
|
del ( |
|
positive_latents, |
|
neutral_latents, |
|
unconditional_latents, |
|
target_latents, |
|
latents, |
|
) |
|
flush() |
|
|
|
|
|
self.network.multiplier = 1.0 |
|
|
|
loss_dict = OrderedDict( |
|
{'loss': loss_float}, |
|
) |
|
if anchor_loss is not None: |
|
loss_dict['sl_l'] = loss_slide |
|
loss_dict['an_l'] = anchor_loss.item() |
|
|
|
return loss_dict |
|
|
|
|