alatlatihlora / jobs /process /TrainESRGANProcess.py
crystantine's picture
Upload 190 files
1ba389d verified
import copy
import glob
import os
import time
from collections import OrderedDict
from typing import List, Optional
from PIL import Image
from PIL.ImageOps import exif_transpose
from toolkit.basic import flush
from toolkit.models.RRDB import RRDBNet as ESRGAN, esrgan_safetensors_keys
from safetensors.torch import save_file, load_file
from torch.utils.data import DataLoader, ConcatDataset
import torch
from torch import nn
from torchvision.transforms import transforms
from jobs.process import BaseTrainProcess
from toolkit.data_loader import AugmentedImageDataset
from toolkit.esrgan_utils import convert_state_dict_to_basicsr, convert_basicsr_state_dict_to_save_format
from toolkit.losses import ComparativeTotalVariation, get_gradient_penalty, PatternLoss
from toolkit.metadata import get_meta_for_safetensors
from toolkit.optimizer import get_optimizer
from toolkit.style import get_style_model_and_losses
from toolkit.train_tools import get_torch_dtype
from diffusers import AutoencoderKL
from tqdm import tqdm
import time
import numpy as np
from .models.vgg19_critic import Critic
IMAGE_TRANSFORMS = transforms.Compose(
[
transforms.ToTensor(),
# transforms.Normalize([0.5], [0.5]),
]
)
class TrainESRGANProcess(BaseTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.data_loader = None
self.model: ESRGAN = None
self.device = self.get_conf('device', self.job.device)
self.pretrained_path = self.get_conf('pretrained_path', 'None')
self.datasets_objects = self.get_conf('datasets', required=True)
self.batch_size = self.get_conf('batch_size', 1, as_type=int)
self.resolution = self.get_conf('resolution', 256, as_type=int)
self.learning_rate = self.get_conf('learning_rate', 1e-6, as_type=float)
self.sample_every = self.get_conf('sample_every', None)
self.optimizer_type = self.get_conf('optimizer', 'adam')
self.epochs = self.get_conf('epochs', None, as_type=int)
self.max_steps = self.get_conf('max_steps', None, as_type=int)
self.save_every = self.get_conf('save_every', None)
self.upscale_sample = self.get_conf('upscale_sample', 4)
self.dtype = self.get_conf('dtype', 'float32')
self.sample_sources = self.get_conf('sample_sources', None)
self.log_every = self.get_conf('log_every', 100, as_type=int)
self.style_weight = self.get_conf('style_weight', 0, as_type=float)
self.content_weight = self.get_conf('content_weight', 0, as_type=float)
self.mse_weight = self.get_conf('mse_weight', 1e0, as_type=float)
self.zoom = self.get_conf('zoom', 4, as_type=int)
self.tv_weight = self.get_conf('tv_weight', 1e0, as_type=float)
self.critic_weight = self.get_conf('critic_weight', 1, as_type=float)
self.pattern_weight = self.get_conf('pattern_weight', 1, as_type=float)
self.optimizer_params = self.get_conf('optimizer_params', {})
self.augmentations = self.get_conf('augmentations', {})
self.torch_dtype = get_torch_dtype(self.dtype)
if self.torch_dtype == torch.bfloat16:
self.esrgan_dtype = torch.float32
else:
self.esrgan_dtype = torch.float32
self.vgg_19 = None
self.style_weight_scalers = []
self.content_weight_scalers = []
# throw error if zoom if not divisible by 2
if self.zoom % 2 != 0:
raise ValueError('zoom must be divisible by 2')
self.step_num = 0
self.epoch_num = 0
self.use_critic = self.get_conf('use_critic', False, as_type=bool)
self.critic = None
if self.use_critic:
self.critic = Critic(
device=self.device,
dtype=self.dtype,
process=self,
**self.get_conf('critic', {}) # pass any other params
)
if self.sample_every is not None and self.sample_sources is None:
raise ValueError('sample_every is specified but sample_sources is not')
if self.epochs is None and self.max_steps is None:
raise ValueError('epochs or max_steps must be specified')
self.data_loaders = []
# check datasets
assert isinstance(self.datasets_objects, list)
for dataset in self.datasets_objects:
if 'path' not in dataset:
raise ValueError('dataset must have a path')
# check if is dir
if not os.path.isdir(dataset['path']):
raise ValueError(f"dataset path does is not a directory: {dataset['path']}")
# make training folder
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
self._pattern_loss = None
# build augmentation transforms
aug_transforms = []
def update_training_metadata(self):
self.add_meta(OrderedDict({"training_info": self.get_training_info()}))
def get_training_info(self):
info = OrderedDict({
'step': self.step_num,
'epoch': self.epoch_num,
})
return info
def load_datasets(self):
if self.data_loader is None:
print(f"Loading datasets")
datasets = []
for dataset in self.datasets_objects:
print(f" - Dataset: {dataset['path']}")
ds = copy.copy(dataset)
ds['resolution'] = self.resolution
if 'augmentations' not in ds:
ds['augmentations'] = self.augmentations
# add the resize down augmentation
ds['augmentations'] = [{
'method': 'Resize',
'params': {
'width': int(self.resolution // self.zoom),
'height': int(self.resolution // self.zoom),
# downscale interpolation, string will be evaluated
'interpolation': 'cv2.INTER_AREA'
}
}] + ds['augmentations']
image_dataset = AugmentedImageDataset(ds)
datasets.append(image_dataset)
concatenated_dataset = ConcatDataset(datasets)
self.data_loader = DataLoader(
concatenated_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=6
)
def setup_vgg19(self):
if self.vgg_19 is None:
self.vgg_19, self.style_losses, self.content_losses, self.vgg19_pool_4 = get_style_model_and_losses(
single_target=True,
device=self.device,
output_layer_name='pool_4',
dtype=self.torch_dtype
)
self.vgg_19.to(self.device, dtype=self.torch_dtype)
self.vgg_19.requires_grad_(False)
# we run random noise through first to get layer scalers to normalize the loss per layer
# bs of 2 because we run pred and target through stacked
noise = torch.randn((2, 3, self.resolution, self.resolution), device=self.device, dtype=self.torch_dtype)
self.vgg_19(noise)
for style_loss in self.style_losses:
# get a scaler to normalize to 1
scaler = 1 / torch.mean(style_loss.loss).item()
self.style_weight_scalers.append(scaler)
for content_loss in self.content_losses:
# get a scaler to normalize to 1
scaler = 1 / torch.mean(content_loss.loss).item()
# if is nan, set to 1
if scaler != scaler:
scaler = 1
print(f"Warning: content loss scaler is nan, setting to 1")
self.content_weight_scalers.append(scaler)
self.print(f"Style weight scalers: {self.style_weight_scalers}")
self.print(f"Content weight scalers: {self.content_weight_scalers}")
def get_style_loss(self):
if self.style_weight > 0:
# scale all losses with loss scalers
loss = torch.sum(
torch.stack([loss.loss * scaler for loss, scaler in zip(self.style_losses, self.style_weight_scalers)]))
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_content_loss(self):
if self.content_weight > 0:
# scale all losses with loss scalers
loss = torch.sum(torch.stack(
[loss.loss * scaler for loss, scaler in zip(self.content_losses, self.content_weight_scalers)]))
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_mse_loss(self, pred, target):
if self.mse_weight > 0:
loss_fn = nn.MSELoss()
loss = loss_fn(pred, target)
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_tv_loss(self, pred, target):
if self.tv_weight > 0:
get_tv_loss = ComparativeTotalVariation()
loss = get_tv_loss(pred, target)
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_pattern_loss(self, pred, target):
if self._pattern_loss is None:
self._pattern_loss = PatternLoss(
pattern_size=self.zoom,
dtype=self.torch_dtype
).to(self.device, dtype=self.torch_dtype)
self._pattern_loss = self._pattern_loss.to(self.device, dtype=self.torch_dtype)
loss = torch.mean(self._pattern_loss(pred, target))
return loss
def save(self, step=None):
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
step_num = ''
if step is not None:
# zeropad 9 digits
step_num = f"_{str(step).zfill(9)}"
self.update_training_metadata()
# filename = f'{self.job.name}{step_num}.safetensors'
filename = f'{self.job.name}{step_num}.pth'
# prepare meta
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
# state_dict = self.model.state_dict()
# state has the original state dict keys so we can save what we started from
save_state_dict = self.model.state_dict()
for key in list(save_state_dict.keys()):
v = save_state_dict[key]
v = v.detach().clone().to("cpu").to(torch.float32)
save_state_dict[key] = v
# most things wont use safetensors, save as torch
# save_file(save_state_dict, os.path.join(self.save_root, filename), save_meta)
torch.save(save_state_dict, os.path.join(self.save_root, filename))
self.print(f"Saved to {os.path.join(self.save_root, filename)}")
if self.use_critic:
self.critic.save(step)
def sample(self, step=None, batch: Optional[List[torch.Tensor]] = None):
sample_folder = os.path.join(self.save_root, 'samples')
if not os.path.exists(sample_folder):
os.makedirs(sample_folder, exist_ok=True)
batch_sample_folder = os.path.join(self.save_root, 'samples_batch')
batch_targets = None
batch_inputs = None
if batch is not None and not os.path.exists(batch_sample_folder):
os.makedirs(batch_sample_folder, exist_ok=True)
self.model.eval()
def process_and_save(img, target_img, save_path):
img = img.to(self.device, dtype=self.esrgan_dtype)
output = self.model(img)
# output = (output / 2 + 0.5).clamp(0, 1)
output = output.clamp(0, 1)
img = img.clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
output = output.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy()
img = img.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy()
# convert to pillow image
output = Image.fromarray((output * 255).astype(np.uint8))
img = Image.fromarray((img * 255).astype(np.uint8))
if isinstance(target_img, torch.Tensor):
# convert to pil
target_img = target_img.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy()
target_img = Image.fromarray((target_img * 255).astype(np.uint8))
# upscale to size * self.upscale_sample while maintaining pixels
output = output.resize(
(self.resolution * self.upscale_sample, self.resolution * self.upscale_sample),
resample=Image.NEAREST
)
img = img.resize(
(self.resolution * self.upscale_sample, self.resolution * self.upscale_sample),
resample=Image.NEAREST
)
width, height = output.size
# stack input image and decoded image
target_image = target_img.resize((width, height))
output = output.resize((width, height))
img = img.resize((width, height))
output_img = Image.new('RGB', (width * 3, height))
output_img.paste(img, (0, 0))
output_img.paste(output, (width, 0))
output_img.paste(target_image, (width * 2, 0))
output_img.save(save_path)
with torch.no_grad():
for i, img_url in enumerate(self.sample_sources):
img = exif_transpose(Image.open(img_url))
img = img.convert('RGB')
# crop if not square
if img.width != img.height:
min_dim = min(img.width, img.height)
img = img.crop((0, 0, min_dim, min_dim))
# resize
img = img.resize((self.resolution * self.zoom, self.resolution * self.zoom), resample=Image.BICUBIC)
target_image = img
# downscale the image input
img = img.resize((self.resolution, self.resolution), resample=Image.BICUBIC)
# downscale the image input
img = IMAGE_TRANSFORMS(img).unsqueeze(0).to(self.device, dtype=self.esrgan_dtype)
img = img
step_num = ''
if step is not None:
# zero-pad 9 digits
step_num = f"_{str(step).zfill(9)}"
seconds_since_epoch = int(time.time())
# zero-pad 2 digits
i_str = str(i).zfill(2)
filename = f"{seconds_since_epoch}{step_num}_{i_str}.jpg"
process_and_save(img, target_image, os.path.join(sample_folder, filename))
if batch is not None:
batch_targets = batch[0].detach()
batch_inputs = batch[1].detach()
batch_targets = torch.chunk(batch_targets, batch_targets.shape[0], dim=0)
batch_inputs = torch.chunk(batch_inputs, batch_inputs.shape[0], dim=0)
for i in range(len(batch_inputs)):
if step is not None:
# zero-pad 9 digits
step_num = f"_{str(step).zfill(9)}"
seconds_since_epoch = int(time.time())
# zero-pad 2 digits
i_str = str(i).zfill(2)
filename = f"{seconds_since_epoch}{step_num}_{i_str}.jpg"
process_and_save(batch_inputs[i], batch_targets[i], os.path.join(batch_sample_folder, filename))
self.model.train()
def load_model(self):
state_dict = None
path_to_load = self.pretrained_path
# see if we have a checkpoint in out output to resume from
self.print(f"Looking for latest checkpoint in {self.save_root}")
files = glob.glob(os.path.join(self.save_root, f"{self.job.name}*.safetensors"))
files += glob.glob(os.path.join(self.save_root, f"{self.job.name}*.pth"))
if files and len(files) > 0:
latest_file = max(files, key=os.path.getmtime)
print(f" - Latest checkpoint is: {latest_file}")
path_to_load = latest_file
# todo update step and epoch count
elif self.pretrained_path is None:
self.print(f" - No checkpoint found, starting from scratch")
else:
self.print(f" - No checkpoint found, loading pretrained model")
self.print(f" - path: {path_to_load}")
if path_to_load is not None:
self.print(f" - Loading pretrained checkpoint: {path_to_load}")
# if ends with pth then assume pytorch checkpoint
if path_to_load.endswith('.pth') or path_to_load.endswith('.pt'):
state_dict = torch.load(path_to_load, map_location=self.device)
elif path_to_load.endswith('.safetensors'):
state_dict_raw = load_file(path_to_load)
# make ordered dict as most things need it
state_dict = OrderedDict()
for key in esrgan_safetensors_keys:
state_dict[key] = state_dict_raw[key]
else:
raise Exception(f"Unknown file extension for checkpoint: {path_to_load}")
# todo determine architecture from checkpoint
self.model = ESRGAN(
state_dict
).to(self.device, dtype=self.esrgan_dtype)
# set the model to training mode
self.model.train()
self.model.requires_grad_(True)
def run(self):
super().run()
self.load_datasets()
steps_per_step = (self.critic.num_critic_per_gen + 1)
max_step_epochs = self.max_steps // (len(self.data_loader) // steps_per_step)
num_epochs = self.epochs
if num_epochs is None or num_epochs > max_step_epochs:
num_epochs = max_step_epochs
max_epoch_steps = len(self.data_loader) * num_epochs * steps_per_step
num_steps = self.max_steps
if num_steps is None or num_steps > max_epoch_steps:
num_steps = max_epoch_steps
self.max_steps = num_steps
self.epochs = num_epochs
start_step = self.step_num
self.first_step = start_step
self.print(f"Training ESRGAN model:")
self.print(f" - Training folder: {self.training_folder}")
self.print(f" - Batch size: {self.batch_size}")
self.print(f" - Learning rate: {self.learning_rate}")
self.print(f" - Epochs: {num_epochs}")
self.print(f" - Max steps: {self.max_steps}")
# load model
self.load_model()
params = self.model.parameters()
if self.style_weight > 0 or self.content_weight > 0 or self.use_critic:
self.setup_vgg19()
self.vgg_19.requires_grad_(False)
self.vgg_19.eval()
if self.use_critic:
self.critic.setup()
optimizer = get_optimizer(params, self.optimizer_type, self.learning_rate,
optimizer_params=self.optimizer_params)
# setup scheduler
# todo allow other schedulers
scheduler = torch.optim.lr_scheduler.ConstantLR(
optimizer,
total_iters=num_steps,
factor=1,
verbose=False
)
# setup tqdm progress bar
self.progress_bar = tqdm(
total=num_steps,
desc='Training ESRGAN',
leave=True
)
blank_losses = OrderedDict({
"total": [],
"style": [],
"content": [],
"mse": [],
"kl": [],
"tv": [],
"ptn": [],
"crD": [],
"crG": [],
})
epoch_losses = copy.deepcopy(blank_losses)
log_losses = copy.deepcopy(blank_losses)
print("Generating baseline samples")
self.sample(step=0)
# range start at self.epoch_num go to self.epochs
critic_losses = []
for epoch in range(self.epoch_num, self.epochs, 1):
if self.step_num >= self.max_steps:
break
flush()
for targets, inputs in self.data_loader:
if self.step_num >= self.max_steps:
break
with torch.no_grad():
is_critic_only_step = False
if self.use_critic and 1 / (self.critic.num_critic_per_gen + 1) < np.random.uniform():
is_critic_only_step = True
targets = targets.to(self.device, dtype=self.esrgan_dtype).clamp(0, 1).detach()
inputs = inputs.to(self.device, dtype=self.esrgan_dtype).clamp(0, 1).detach()
optimizer.zero_grad()
# dont do grads here for critic step
do_grad = not is_critic_only_step
with torch.set_grad_enabled(do_grad):
pred = self.model(inputs)
pred = pred.to(self.device, dtype=self.torch_dtype).clamp(0, 1)
targets = targets.to(self.device, dtype=self.torch_dtype).clamp(0, 1)
if torch.isnan(pred).any():
raise ValueError('pred has nan values')
if torch.isnan(targets).any():
raise ValueError('targets has nan values')
# Run through VGG19
if self.style_weight > 0 or self.content_weight > 0 or self.use_critic:
stacked = torch.cat([pred, targets], dim=0)
# stacked = (stacked / 2 + 0.5).clamp(0, 1)
stacked = stacked.clamp(0, 1)
self.vgg_19(stacked)
# make sure we dont have nans
if torch.isnan(self.vgg19_pool_4.tensor).any():
raise ValueError('vgg19_pool_4 has nan values')
if is_critic_only_step:
critic_d_loss = self.critic.step(self.vgg19_pool_4.tensor.detach())
critic_losses.append(critic_d_loss)
# don't do generator step
continue
else:
# doing a regular step
if len(critic_losses) == 0:
critic_d_loss = 0
else:
critic_d_loss = sum(critic_losses) / len(critic_losses)
style_loss = self.get_style_loss() * self.style_weight
content_loss = self.get_content_loss() * self.content_weight
mse_loss = self.get_mse_loss(pred, targets) * self.mse_weight
tv_loss = self.get_tv_loss(pred, targets) * self.tv_weight
pattern_loss = self.get_pattern_loss(pred, targets) * self.pattern_weight
if self.use_critic:
critic_gen_loss = self.critic.get_critic_loss(self.vgg19_pool_4.tensor) * self.critic_weight
else:
critic_gen_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
loss = style_loss + content_loss + mse_loss + tv_loss + critic_gen_loss + pattern_loss
# make sure non nan
if torch.isnan(loss):
raise ValueError('loss is nan')
# Backward pass and optimization
loss.backward()
torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
optimizer.step()
scheduler.step()
# update progress bar
loss_value = loss.item()
# get exponent like 3.54e-4
loss_string = f"loss: {loss_value:.2e}"
if self.content_weight > 0:
loss_string += f" cnt: {content_loss.item():.2e}"
if self.style_weight > 0:
loss_string += f" sty: {style_loss.item():.2e}"
if self.mse_weight > 0:
loss_string += f" mse: {mse_loss.item():.2e}"
if self.tv_weight > 0:
loss_string += f" tv: {tv_loss.item():.2e}"
if self.pattern_weight > 0:
loss_string += f" ptn: {pattern_loss.item():.2e}"
if self.use_critic and self.critic_weight > 0:
loss_string += f" crG: {critic_gen_loss.item():.2e}"
if self.use_critic:
loss_string += f" crD: {critic_d_loss:.2e}"
if self.optimizer_type.startswith('dadaptation') or self.optimizer_type.startswith('prodigy'):
learning_rate = (
optimizer.param_groups[0]["d"] *
optimizer.param_groups[0]["lr"]
)
else:
learning_rate = optimizer.param_groups[0]['lr']
lr_critic_string = ''
if self.use_critic:
lr_critic = self.critic.get_lr()
lr_critic_string = f" lrC: {lr_critic:.1e}"
self.progress_bar.set_postfix_str(f"lr: {learning_rate:.1e}{lr_critic_string} {loss_string}")
self.progress_bar.set_description(f"E: {epoch}")
self.progress_bar.update(1)
epoch_losses["total"].append(loss_value)
epoch_losses["style"].append(style_loss.item())
epoch_losses["content"].append(content_loss.item())
epoch_losses["mse"].append(mse_loss.item())
epoch_losses["tv"].append(tv_loss.item())
epoch_losses["ptn"].append(pattern_loss.item())
epoch_losses["crG"].append(critic_gen_loss.item())
epoch_losses["crD"].append(critic_d_loss)
log_losses["total"].append(loss_value)
log_losses["style"].append(style_loss.item())
log_losses["content"].append(content_loss.item())
log_losses["mse"].append(mse_loss.item())
log_losses["tv"].append(tv_loss.item())
log_losses["ptn"].append(pattern_loss.item())
log_losses["crG"].append(critic_gen_loss.item())
log_losses["crD"].append(critic_d_loss)
# don't do on first step
if self.step_num != start_step:
if self.sample_every and self.step_num % self.sample_every == 0:
# print above the progress bar
self.print(f"Sampling at step {self.step_num}")
self.sample(self.step_num, batch=[targets, inputs])
if self.save_every and self.step_num % self.save_every == 0:
# print above the progress bar
self.print(f"Saving at step {self.step_num}")
self.save(self.step_num)
if self.log_every and self.step_num % self.log_every == 0:
# log to tensorboard
if self.writer is not None:
# get avg loss
for key in log_losses:
log_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + 1e-6)
# if log_losses[key] > 0:
self.writer.add_scalar(f"loss/{key}", log_losses[key], self.step_num)
# reset log losses
log_losses = copy.deepcopy(blank_losses)
self.step_num += 1
# end epoch
if self.writer is not None:
eps = 1e-6
# get avg loss
for key in epoch_losses:
epoch_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + eps)
if epoch_losses[key] > 0:
self.writer.add_scalar(f"epoch loss/{key}", epoch_losses[key], epoch)
# reset epoch losses
epoch_losses = copy.deepcopy(blank_losses)
self.save()