|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
from PIL import Image, ImageEnhance |
|
from PIL.PngImagePlugin import PngInfo |
|
import os |
|
import sys |
|
import io |
|
import matplotlib.pyplot as plt |
|
|
|
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy")) |
|
|
|
import comfy.sd |
|
import comfy.utils |
|
import comfy.model_management |
|
|
|
import folder_paths |
|
import json |
|
from nodes import MAX_RESOLUTION |
|
import typing as tg |
|
|
|
|
|
|
|
|
|
def tensor2pil(image): |
|
return Image.fromarray(np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)) |
|
|
|
def pil2tensor(image): |
|
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0) |
|
|
|
|
|
|
|
|
|
class ComfyRoll_InputImages: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"Input": ("INT", {"default": 1, "min": 1, "max": 2}), |
|
"image1": ("IMAGE",), |
|
"image2": ("IMAGE",) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "InputImages" |
|
|
|
CATEGORY = "Comfyroll/Logic" |
|
|
|
def InputImages(self, Input, image1, image2): |
|
if Input == 1: |
|
return (image1, ) |
|
else: |
|
return (image2, ) |
|
|
|
|
|
|
|
class ComfyRoll_InputImages_4way: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"Input": ("INT", {"default": 1, "min": 1, "max": 4}), |
|
"image1": ("IMAGE",), |
|
}, |
|
"optional": { |
|
"image2": ("IMAGE",), |
|
"image3": ("IMAGE",), |
|
"image4": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "InputImages_4" |
|
|
|
CATEGORY = "Comfyroll/Logic" |
|
|
|
def InputImages_4(self, Input, image1, image2=None, image3=None, image4=None): |
|
if Input == 1: |
|
return (image1, ) |
|
elif Input == 2: |
|
return (image2, ) |
|
elif Input == 3: |
|
return (image3, ) |
|
else: |
|
return (image4, ) |
|
|
|
|
|
|
|
class ComfyRoll_InputLatents: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"Input": ("INT", {"default": 1, "min": 1, "max": 2}), |
|
"latent1": ("LATENT",), |
|
"latent2": ("LATENT",) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "InputLatents" |
|
|
|
CATEGORY = "Comfyroll/Logic" |
|
|
|
def InputLatents(self, Input, latent1, latent2): |
|
if Input == 1: |
|
return (latent1, ) |
|
else: |
|
return (latent2, ) |
|
|
|
|
|
|
|
|
|
|
|
class ComfyRoll_InputConditioning: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"Input": ("INT", {"default": 1, "min": 1, "max": 2}), |
|
"conditioning1": ("CONDITIONING",), |
|
"conditioning2": ("CONDITIONING",) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("CONDITIONING",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "InputConditioning" |
|
|
|
CATEGORY = "Comfyroll/Logic" |
|
|
|
def InputConditioning(self, Input, conditioning1, conditioning2): |
|
if Input == 1: |
|
return (conditioning1, ) |
|
else: |
|
return (conditioning2, ) |
|
|
|
|
|
|
|
class ComfyRoll_InputClip: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"Input": ("INT", {"default": 1, "min": 1, "max": 2}), |
|
"clip1": ("CLIP",), |
|
"clip2": ("CLIP",) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("CLIP",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "InputClip" |
|
|
|
CATEGORY = "Comfyroll/Logic" |
|
|
|
def InputClip(self, Input, clip1, clip2): |
|
if Input == 1: |
|
return (clip1, ) |
|
else: |
|
return (clip2, ) |
|
|
|
|
|
|
|
class ComfyRoll_InputModel: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"Input": ("INT", {"default": 1, "min": 1, "max": 2}), |
|
"model1": ("MODEL",), |
|
"model2": ("MODEL",) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MODEL",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "InputModel" |
|
|
|
CATEGORY = "Comfyroll/Logic" |
|
|
|
def InputModel(self, Input, model1, model2): |
|
if Input == 1: |
|
return (model1, ) |
|
else: |
|
return (model2, ) |
|
|
|
|
|
|
|
class ComfyRoll_InputControlNet: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"Input": ("INT", {"default": 1, "min": 1, "max": 2}), |
|
"control_net1": ("CONTROL_NET",), |
|
"control_net2": ("CONTROL_NET",) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("CONTROL_NET",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "InputControlNet" |
|
|
|
CATEGORY = "Comfyroll/Logic" |
|
|
|
def InputControlNet(self, Input, control_net1, control_net2): |
|
if Input == 1: |
|
return (control_net1, ) |
|
else: |
|
return (control_net2, ) |
|
|
|
|
|
class ComfyRoll_InputLatentsText: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"Input": (["txt2img", "img2img"],), |
|
"txt2img": ("LATENT",), |
|
"img2img": ("LATENT",) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "InputLatentsText" |
|
|
|
CATEGORY = "Comfyroll/Process" |
|
|
|
def InputLatentsText(self, Input, txt2img, img2img): |
|
if Input == "txt2img": |
|
return (txt2img, ) |
|
else: |
|
return (img2img, ) |
|
|
|
|
|
|
|
|
|
class ComfyRoll_HiResFixSwitch: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"Input": (["latent_upscale", "image_upscale"],), |
|
"latent_upscale": ("LATENT",), |
|
"image_upscale": ("LATENT",) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "InputHiResText" |
|
|
|
CATEGORY = "Comfyroll/Process" |
|
|
|
def InputHiResText(self, Input, latent_upscale, image_upscale): |
|
if Input == "latent_upscale": |
|
return (latent_upscale, ) |
|
else: |
|
return (image_upscale, ) |
|
|
|
|
|
|
|
|
|
class ComfyRoll_LoraLoader: |
|
def __init__(self): |
|
self.loaded_lora = None |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
file_list = folder_paths.get_filename_list("loras") |
|
file_list.insert(0, "None") |
|
return {"required": { "model": ("MODEL",), |
|
"clip": ("CLIP", ), |
|
"switch": ([ |
|
"On", |
|
"Off"],), |
|
"lora_name": (file_list, ), |
|
"strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
"strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
}} |
|
RETURN_TYPES = ("MODEL", "CLIP") |
|
FUNCTION = "load_lora" |
|
|
|
CATEGORY = "Comfyroll/IO" |
|
|
|
def load_lora(self, model, clip, switch, lora_name, strength_model, strength_clip): |
|
if strength_model == 0 and strength_clip == 0: |
|
return (model, clip) |
|
|
|
if switch == "Off" or lora_name == "None": |
|
return (model, clip) |
|
|
|
lora_path = folder_paths.get_full_path("loras", lora_name) |
|
lora = None |
|
if self.loaded_lora is not None: |
|
if self.loaded_lora[0] == lora_path: |
|
lora = self.loaded_lora[1] |
|
else: |
|
del self.loaded_lora |
|
|
|
if lora is None: |
|
lora = comfy.utils.load_torch_file(lora_path, safe_load=True) |
|
self.loaded_lora = (lora_path, lora) |
|
|
|
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip) |
|
return (model_lora, clip_lora) |
|
|
|
|
|
|
|
class ComfyRoll_ApplyControlNet: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"conditioning": ("CONDITIONING", ), |
|
"control_net": ("CONTROL_NET", ), |
|
"image": ("IMAGE", ), |
|
"switch": ([ |
|
"On", |
|
"Off"],), |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}) |
|
}} |
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "apply_controlnet" |
|
|
|
CATEGORY = "Comfyroll/Conditioning" |
|
|
|
def apply_controlnet(self, conditioning, control_net, image, switch, strength): |
|
if strength == 0 or switch == "Off": |
|
return (conditioning, ) |
|
|
|
c = [] |
|
control_hint = image.movedim(-1,1) |
|
for t in conditioning: |
|
n = [t[0], t[1].copy()] |
|
c_net = control_net.copy().set_cond_hint(control_hint, strength) |
|
if 'control' in t[1]: |
|
c_net.set_previous_controlnet(t[1]['control']) |
|
n[1]['control'] = c_net |
|
c.append(n) |
|
return (c, ) |
|
|
|
|
|
|
|
class ComfyRoll_ImageSize_Float: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"width": ("INT", {"default": 512, "min": 64, "max": 2048}), |
|
"height": ("INT", {"default": 512, "min": 64, "max": 2048}), |
|
"upscale_factor": ("FLOAT", {"default": 1, "min": 1, "max": 2000}) |
|
} |
|
} |
|
RETURN_TYPES = ("INT", "INT", "FLOAT") |
|
|
|
FUNCTION = "ImageSize_Float" |
|
|
|
CATEGORY = "Comfyroll/Image" |
|
|
|
def ImageSize_Float(self, width, height, upscale_factor): |
|
return(width, height, upscale_factor) |
|
|
|
|
|
|
|
class ComfyRoll_ImageOutput: |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
self.type = "output" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"images": ("IMAGE", ), |
|
"output_type": (["Preview", "Save"],), |
|
"filename_prefix": ("STRING", {"default": "ComfyUI"})}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "save_images" |
|
|
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "Comfyroll/Legacy" |
|
|
|
def save_images(self, images, filename_prefix="ComfyUI", output_type = "Preview", prompt=None, extra_pnginfo=None): |
|
def map_filename(filename): |
|
prefix_len = len(os.path.basename(filename_prefix)) |
|
prefix = filename[:prefix_len + 1] |
|
try: |
|
digits = int(filename[prefix_len + 1:].split('_')[0]) |
|
except: |
|
digits = 0 |
|
return (digits, prefix) |
|
|
|
def compute_vars(input): |
|
input = input.replace("%width%", str(images[0].shape[1])) |
|
input = input.replace("%height%", str(images[0].shape[0])) |
|
return input |
|
|
|
if output_type == "Save": |
|
self.output_dir = folder_paths.get_output_directory() |
|
self.type = "output" |
|
elif output_type == "Preview": |
|
self.output_dir = folder_paths.get_temp_directory() |
|
self.type = "temp" |
|
|
|
filename_prefix = compute_vars(filename_prefix) |
|
|
|
subfolder = os.path.dirname(os.path.normpath(filename_prefix)) |
|
filename = os.path.basename(os.path.normpath(filename_prefix)) |
|
|
|
full_output_folder = os.path.join(self.output_dir, subfolder) |
|
|
|
if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir: |
|
print("Saving image outside the output folder is not allowed.") |
|
return {} |
|
|
|
try: |
|
counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1 |
|
except ValueError: |
|
counter = 1 |
|
except FileNotFoundError: |
|
os.makedirs(full_output_folder, exist_ok=True) |
|
counter = 1 |
|
|
|
results = list() |
|
for image in images: |
|
i = 255. * image.cpu().numpy() |
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
metadata = PngInfo() |
|
if prompt is not None: |
|
metadata.add_text("prompt", json.dumps(prompt)) |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata.add_text(x, json.dumps(extra_pnginfo[x])) |
|
|
|
file = f"{filename}_{counter:05}_.png" |
|
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4) |
|
results.append({ |
|
"filename": file, |
|
"subfolder": subfolder, |
|
"type": self.type |
|
}) |
|
counter += 1 |
|
|
|
return { "ui": { "images": results } } |
|
|
|
|
|
|
|
class CR_Int_Multiple_Of: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"integer": ("INT", {"default": 1, "min": -18446744073709551615, "max": 18446744073709551615}), |
|
"multiple": ("FLOAT", {"default": 8, "min": 1, "max": 18446744073709551615}), |
|
} |
|
} |
|
|
|
RETURN_TYPES =("INT",) |
|
FUNCTION = "int_multiple_of" |
|
|
|
CATEGORY = "Comfyroll/Math" |
|
|
|
def int_multiple_of(self, integer, multiple=8): |
|
if multiple == 0: |
|
return (int(integer), ) |
|
integer = integer * multiple |
|
return (int(integer), ) |
|
|
|
|
|
|
|
class ComfyRoll_AspectRatio: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"width": ("INT", {"default": 512, "min": 64, "max": 2048}), |
|
"height": ("INT", {"default": 512, "min": 64, "max": 2048}), |
|
"aspect_ratio": (["custom", "1:1 square 512x512", "1:1 square 1024x1024", "2:3 portrait 512x768", "3:4 portrait 512x682", "3:2 landscape 768x512", "4:3 landscape 682x512", "16:9 cinema 910x512", "2:1 cinema 1024x512"],), |
|
"swap_dimensions": (["Off", "On"],), |
|
"upscale_factor1": ("FLOAT", {"default": 1, "min": 1, "max": 2000}), |
|
"upscale_factor2": ("FLOAT", {"default": 1, "min": 1, "max": 2000}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}) |
|
} |
|
} |
|
RETURN_TYPES = ("INT", "INT", "FLOAT", "FLOAT", "INT") |
|
|
|
FUNCTION = "Aspect_Ratio" |
|
|
|
CATEGORY = "Comfyroll/Image" |
|
|
|
def Aspect_Ratio(self, width, height, aspect_ratio, swap_dimensions, upscale_factor1, upscale_factor2, batch_size): |
|
if swap_dimensions == "Off": |
|
if aspect_ratio == "2:3 portrait 512x768": |
|
width, height = 512, 768 |
|
elif aspect_ratio == "3:2 landscape 768x512": |
|
width, height = 768, 512 |
|
elif aspect_ratio == "1:1 square 512x512": |
|
width, height = 512, 512 |
|
elif aspect_ratio == "1:1 square 1024x1024": |
|
width, height = 1024, 1024 |
|
elif aspect_ratio == "16:9 cinema 910x512": |
|
width, height = 910, 512 |
|
elif aspect_ratio == "3:4 portrait 512x682": |
|
width, height = 512, 682 |
|
elif aspect_ratio == "4:3 landscape 682x512": |
|
width, height = 682, 512 |
|
elif aspect_ratio == "2:1 cinema 1024x512": |
|
width, height = 1024, 512 |
|
return(width, height, upscale_factor1, upscale_factor2, batch_size) |
|
elif swap_dimensions == "On": |
|
if aspect_ratio == "2:3 portrait 512x768": |
|
width, height = 512, 768 |
|
elif aspect_ratio == "3:2 landscape 768x512": |
|
width, height = 768, 512 |
|
elif aspect_ratio == "1:1 square 512x512": |
|
width, height = 512, 512 |
|
elif aspect_ratio == "1:1 square 1024x1024": |
|
width, height = 1024, 1024 |
|
elif aspect_ratio == "16:9 cinema 910x512": |
|
width,height = 910, 512 |
|
elif aspect_ratio == "3:4 portrait 512x682": |
|
width, height = 512, 682 |
|
elif aspect_ratio == "4:3 landscape 682x512": |
|
width, height = 682, 512 |
|
elif aspect_ratio == "2:1 cinema 1024x512": |
|
width, height = 1024, 512 |
|
return(height, width, upscale_factor1, upscale_factor2, batch_size) |
|
|
|
|
|
|
|
class ComfyRoll_AspectRatio_SDXL: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"width": ("INT", {"default": 1024, "min": 64, "max": 2048}), |
|
"height": ("INT", {"default": 1024, "min": 64, "max": 2048}), |
|
"aspect_ratio": (["custom", "square 1024x1024", "portrait 896x1152", "portrait 832x1216", "portrait 768x1344", "portrait 640 x 1536", "landscape 1152x896", "landscape 1216x832", "landscape 1344x768", "landscape 1536x640"],), |
|
"swap_dimensions": (["Off", "On"],), |
|
"upscale_factor1": ("FLOAT", {"default": 1, "min": 1, "max": 2000}), |
|
"upscale_factor2": ("FLOAT", {"default": 1, "min": 1, "max": 2000}), |
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64}) |
|
} |
|
} |
|
RETURN_TYPES = ("INT", "INT", "FLOAT", "FLOAT", "INT") |
|
|
|
FUNCTION = "Aspect_Ratio" |
|
|
|
CATEGORY = "Comfyroll/SDXL" |
|
|
|
def Aspect_Ratio(self, width, height, aspect_ratio, swap_dimensions, upscale_factor1, upscale_factor2, batch_size): |
|
if aspect_ratio == "square 1024x1024": |
|
width, height = 1024, 1024 |
|
elif aspect_ratio == "portrait 896x1152": |
|
width, height = 896, 1152 |
|
elif aspect_ratio == "portrait 832x1216": |
|
width, height = 822, 1216 |
|
elif aspect_ratio == "portrait 768x1344": |
|
width, height = 768, 1344 |
|
elif aspect_ratio == "portrait 640 x 1536": |
|
width, height = 640, 1536 |
|
elif aspect_ratio == "landscape 1152x896": |
|
width, height = 1152, 896 |
|
elif aspect_ratio == "landscape 1152x896": |
|
width, height = 682, 512 |
|
elif aspect_ratio == "landscape 1216x832": |
|
width, height = 1216, 832 |
|
elif aspect_ratio == "landscape 1344x768": |
|
width, height = 1152, 896 |
|
elif aspect_ratio == "landscape 1536x640": |
|
width, height = 1536, 640 |
|
|
|
if swap_dimensions == "On": |
|
return(height, width, upscale_factor1, upscale_factor2, batch_size,) |
|
else: |
|
return(width, height, upscale_factor1, upscale_factor2, batch_size,) |
|
|
|
|
|
|
|
class ComfyRoll_SeedToInt: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"seed": ("SEED", ), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("INT",) |
|
FUNCTION = "seed_to_int" |
|
|
|
CATEGORY = "Comfyroll/Number" |
|
|
|
def seed_to_int(self, seed): |
|
return (seed.get('seed'),) |
|
|
|
|
|
|
|
class Comfyroll_Color_Tint: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"strength": ("FLOAT", { |
|
"default": 1.0, |
|
"min": 0.1, |
|
"max": 1.0, |
|
"step": 0.1 |
|
}), |
|
"mode": (["white", "black", "sepia", "red", "green", "blue", "cyan", "magenta", "yellow", "purple", "orange", "warm", "cool", "lime", "navy", "vintage", "rose", "teal", "maroon", "peach", "lavender", "olive"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "color_tint" |
|
|
|
CATEGORY = "Comfyroll/Image" |
|
|
|
def color_tint(self, image: torch.Tensor, strength: float, mode: str = "sepia"): |
|
if strength == 0: |
|
return (image,) |
|
|
|
sepia_weights = torch.tensor([0.2989, 0.5870, 0.1140]).view(1, 1, 1, 3).to(image.device) |
|
|
|
mode_filters = { |
|
"white": torch.tensor([1.0, 1.0, 1.0]), |
|
"black": torch.tensor([0, 0, 0]), |
|
"sepia": torch.tensor([1.0, 0.8, 0.6]), |
|
"red": torch.tensor([1.0, 0.6, 0.6]), |
|
"green": torch.tensor([0.6, 1.0, 0.6]), |
|
"blue": torch.tensor([0.6, 0.8, 1.0]), |
|
"cyan": torch.tensor([0.6, 1.0, 1.0]), |
|
"magenta": torch.tensor([1.0, 0.6, 1.0]), |
|
"yellow": torch.tensor([1.0, 1.0, 0.6]), |
|
"purple": torch.tensor([0.8, 0.6, 1.0]), |
|
"orange": torch.tensor([1.0, 0.7, 0.3]), |
|
"warm": torch.tensor([1.0, 0.9, 0.7]), |
|
"cool": torch.tensor([0.7, 0.9, 1.0]), |
|
"lime": torch.tensor([0.7, 1.0, 0.3]), |
|
"navy": torch.tensor([0.3, 0.4, 0.7]), |
|
"vintage": torch.tensor([0.9, 0.85, 0.7]), |
|
"rose": torch.tensor([1.0, 0.8, 0.9]), |
|
"teal": torch.tensor([0.3, 0.8, 0.8]), |
|
"maroon": torch.tensor([0.7, 0.3, 0.5]), |
|
"peach": torch.tensor([1.0, 0.8, 0.6]), |
|
"lavender": torch.tensor([0.8, 0.6, 1.0]), |
|
"olive": torch.tensor([0.6, 0.7, 0.4]), |
|
} |
|
|
|
scale_filter = mode_filters[mode].view(1, 1, 1, 3).to(image.device) |
|
|
|
grayscale = torch.sum(image * sepia_weights, dim=-1, keepdim=True) |
|
tinted = grayscale * scale_filter |
|
|
|
result = tinted * strength + image * (1 - strength) |
|
return (result,) |
|
|
|
|
|
|
|
class ComfyRoll_prompt_mixer: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required":{ |
|
}, |
|
"optional":{ |
|
"prompt_positive": ("STRING", {"multiline": True, "default": "BASE_POSITIVE"}), |
|
"prompt_negative": ("STRING", {"multiline": True, "default": "BASE_NEGATIVE"}), |
|
"style_positive": ("STRING", {"multiline": True, "default": "REFINER_POSTIVE"}), |
|
"style_negative": ("STRING", {"multiline": True, "default": "REFINER_NEGATIVE"}), |
|
"preset": (["preset 1", "preset 2", "preset 3", "preset 4", "preset 5"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("STRING", "STRING", "STRING", "STRING", "STRING", "STRING", ) |
|
RETURN_NAMES = ("pos_g", "pos_l", "pos_r", "neg_g", "neg_l", "neg_r", ) |
|
FUNCTION = "mixer" |
|
|
|
CATEGORY = "Comfyroll/SDXL" |
|
|
|
def mixer(self, prompt_positive, prompt_negative, style_positive, style_negative, preset): |
|
if preset == "preset 1": |
|
pos_g = prompt_positive |
|
pos_l = prompt_positive |
|
pos_r = prompt_positive |
|
neg_g = prompt_negative |
|
neg_l = prompt_negative |
|
neg_r = prompt_negative |
|
elif preset == "preset 2": |
|
pos_g = prompt_positive |
|
pos_l = style_positive |
|
pos_r = prompt_positive |
|
neg_g = prompt_negative |
|
neg_l = style_negative |
|
neg_r = prompt_negative |
|
elif preset == "preset 3": |
|
pos_g = style_positive |
|
pos_l = prompt_positive |
|
pos_r = style_positive |
|
neg_g = style_negative |
|
neg_l = prompt_negative |
|
neg_r = style_negative |
|
elif preset == "preset 4": |
|
pos_g = prompt_positive + style_positive |
|
pos_l = prompt_positive + style_positive |
|
pos_r = prompt_positive + style_positive |
|
neg_g = prompt_negative + style_negative |
|
neg_l = prompt_negative + style_negative |
|
neg_r = prompt_negative + style_negative |
|
elif preset == "preset 5": |
|
pos_g = prompt_positive |
|
pos_l = prompt_positive |
|
pos_r = style_positive |
|
neg_g = prompt_negative |
|
neg_l = prompt_negative |
|
neg_r = style_negative |
|
return (pos_g, pos_l, pos_r, neg_g, neg_l, neg_r, ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Comfyroll_SDXLStyleText: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"positive_style": ("STRING", {"default": "POS_STYLE", "multiline": True}), |
|
"negative_style": ("STRING", {"default": "NEG_STYLE", "multiline": True}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("STRING", "STRING", ) |
|
RETURN_NAMES = ("positive_prompt_text_l", "negative_prompt_text_l" ) |
|
FUNCTION = "get_value" |
|
|
|
CATEGORY = "Comfyroll/SDXL" |
|
|
|
def get_value(self, positive_style, negative_style): |
|
return (positive_style, negative_style,) |
|
|
|
|
|
|
|
class Comfyroll_SDXLBasePromptEncoder: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"base_clip": ("CLIP", ), |
|
"pos_g": ("STRING", {"multiline": True, "default": "POS_G"}), |
|
"pos_l": ("STRING", {"multiline": True, "default": "POS_L"}), |
|
"neg_g": ("STRING", {"multiline": True, "default": "NEG_G"}), |
|
"neg_l": ("STRING", {"multiline": True, "default": "NEG_L"}), |
|
"preset": (["preset A", "preset B", "preset C"],), |
|
"base_width": ("INT", {"default": 4096.0, "min": 0, "max": MAX_RESOLUTION, "step": 64}), |
|
"base_height": ("INT", {"default": 4096.0, "min": 0, "max": MAX_RESOLUTION, "step": 64}), |
|
"crop_w": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}), |
|
"crop_h": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 64}), |
|
"target_width": ("INT", {"default": 4096.0, "min": 0, "max": MAX_RESOLUTION, "step": 64}), |
|
"target_height": ("INT", {"default": 4096.0, "min": 0, "max": MAX_RESOLUTION, "step": 64}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", ) |
|
RETURN_NAMES = ("base_positive", "base_negative", ) |
|
FUNCTION = "encode" |
|
|
|
CATEGORY = "Comfyroll/SDXL" |
|
|
|
def encode(self, base_clip, pos_g, pos_l, neg_g, neg_l, base_width, base_height, crop_w, crop_h, target_width, target_height, preset,): |
|
empty = base_clip.tokenize("") |
|
|
|
|
|
tokens1 = base_clip.tokenize(pos_g) |
|
tokens1["l"] = base_clip.tokenize(pos_l)["l"] |
|
|
|
if len(tokens1["l"]) != len(tokens1["g"]): |
|
while len(tokens1["l"]) < len(tokens1["g"]): |
|
tokens1["l"] += empty["l"] |
|
while len(tokens1["l"]) > len(tokens1["g"]): |
|
tokens1["g"] += empty["g"] |
|
|
|
cond1, pooled1 = base_clip.encode_from_tokens(tokens1, return_pooled=True) |
|
res1 = [[cond1, {"pooled_output": pooled1, "width": base_width, "height": base_height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]] |
|
|
|
|
|
tokens2 = base_clip.tokenize(neg_g) |
|
tokens2["l"] = base_clip.tokenize(neg_l)["l"] |
|
|
|
if len(tokens2["l"]) != len(tokens2["g"]): |
|
while len(tokens2["l"]) < len(tokens2["g"]): |
|
tokens2["l"] += empty["l"] |
|
while len(tokens2["l"]) > len(tokens2["g"]): |
|
tokens2["g"] += empty["g"] |
|
|
|
cond2, pooled2 = base_clip.encode_from_tokens(tokens2, return_pooled=True) |
|
res2 = [[cond2, {"pooled_output": pooled2, "width": base_width, "height": base_height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]] |
|
|
|
|
|
tokens2 = base_clip.tokenize(pos_l) |
|
tokens2["l"] = base_clip.tokenize(neg_l)["l"] |
|
|
|
if len(tokens2["l"]) != len(tokens2["g"]): |
|
while len(tokens2["l"]) < len(tokens2["g"]): |
|
tokens2["l"] += empty["l"] |
|
while len(tokens2["l"]) > len(tokens2["g"]): |
|
tokens2["g"] += empty["g"] |
|
|
|
cond2, pooled2 = base_clip.encode_from_tokens(tokens2, return_pooled=True) |
|
res3 = [[cond2, {"pooled_output": pooled2, "width": base_width, "height": base_height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]] |
|
|
|
|
|
tokens2 = base_clip.tokenize(neg_l) |
|
tokens2["l"] = base_clip.tokenize(neg_l)["l"] |
|
|
|
if len(tokens2["l"]) != len(tokens2["g"]): |
|
while len(tokens2["l"]) < len(tokens2["g"]): |
|
tokens2["l"] += empty["l"] |
|
while len(tokens2["l"]) > len(tokens2["g"]): |
|
tokens2["g"] += empty["g"] |
|
|
|
cond2, pooled2 = base_clip.encode_from_tokens(tokens2, return_pooled=True) |
|
res4 = [[cond2, {"pooled_output": pooled2, "width": base_width, "height": base_height, "crop_w": crop_w, "crop_h": crop_h, "target_width": target_width, "target_height": target_height}]] |
|
|
|
if preset == "preset A": |
|
base_positive = res1 |
|
base_negative = res2 |
|
elif preset == "preset B": |
|
base_positive = res3 |
|
base_negative = res4 |
|
elif preset == "preset C": |
|
base_positive = res1 + res3 |
|
base_negative = res2 + res4 |
|
|
|
return (base_positive, base_negative, ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class Comfyroll_Halftone_Grid: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"width": ("INT", {"default": 512, "min": 64, "max": 2048}), |
|
"height": ("INT", {"default": 512, "min": 64, "max": 2048}), |
|
"dot_style": (["Accent","afmhot","autumn","binary","Blues","bone","BrBG","brg", |
|
"BuGn","BuPu","bwr","cividis","CMRmap","cool","coolwarm","copper","cubehelix","Dark2","flag", |
|
"gist_earth","gist_gray","gist_heat","gist_rainbow","gist_stern","gist_yarg","GnBu","gnuplot","gnuplot2","gray","Greens", |
|
"Greys","hot","hsv","inferno","jet","magma","nipy_spectral","ocean","Oranges","OrRd", |
|
"Paired","Pastel1","Pastel2","pink","PiYG","plasma","PRGn","prism","PuBu","PuBuGn", |
|
"PuOr","PuRd","Purples","rainbow","RdBu","RdGy","RdPu","RdYlBu","RdYlGn","Reds","seismic", |
|
"Set1","Set2","Set3","Spectral","spring","summer","tab10","tab20","tab20b","tab20c","terrain", |
|
"turbo","twilight","twilight_shifted","viridis","winter","Wistia","YlGn","YlGnBu","YlOrBr","YlOrRd"],), |
|
"reverse_dot_style": (["No", "Yes"],), |
|
"dot_frequency": ("INT", {"default": 50, "min": 1, "max":200, "step": 1}), |
|
"background_color": (["custom", "white", "black", "red", "green", "blue", "cyan", "magenta", "yellow", "purple", "orange", "lime", "navy", "teal", "maroon", "lavender", "olive"],), |
|
"background_R": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), |
|
"background_G": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), |
|
"background_B": ("INT", {"default": 255, "min": 0, "max": 255, "step": 1}), |
|
"x_pos": ("FLOAT", {"default": 0.5, "min": 0, "max": 1, "step": .01}), |
|
"y_pos": ("FLOAT", {"default": 0.5, "min": 0, "max": 1, "step": .01}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", ) |
|
FUNCTION = "halftone" |
|
|
|
CATEGORY = "Comfyroll/Image" |
|
|
|
def halftone(self, width, height, dot_style, reverse_dot_style, dot_frequency, background_color, background_R, background_G, background_B, x_pos, y_pos): |
|
if background_color == "custom": |
|
bgc = (background_R/255, background_G/255, background_B/255) |
|
else: |
|
bgc = background_color |
|
|
|
reverse = "" |
|
|
|
if reverse_dot_style == "Yes": |
|
reverse = "_r" |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(width/100,height/100)) |
|
|
|
|
|
|
|
dotsx = np.linspace(0, 1, dot_frequency) |
|
dotsy = np.linspace(0, 1, dot_frequency) |
|
|
|
X, Y = np.meshgrid(dotsx, dotsy) |
|
|
|
dist = np.sqrt((X - x_pos)**2 + (Y - y_pos)**2) |
|
|
|
fig.patch.set_facecolor(bgc) |
|
ax.scatter(X, Y, c=dist, cmap=dot_style+reverse) |
|
|
|
plt.axis('off') |
|
plt.tight_layout(pad=0, w_pad=0, h_pad=0) |
|
plt.autoscale(tight=True) |
|
plt.show() |
|
|
|
img_buf = io.BytesIO() |
|
plt.savefig(img_buf, format='png') |
|
img = Image.open(img_buf) |
|
|
|
return(pil2tensor(img),) |
|
|
|
|
|
|
|
|
|
|
|
class Comfyroll_LatentBatchSize: |
|
|
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"latent": ("LATENT", ), |
|
"batch_size": ("INT", { |
|
"default": 2, |
|
"min": 1, |
|
"max": 16, |
|
"step": 1, |
|
}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("LATENT", ) |
|
|
|
FUNCTION = "batchsize" |
|
|
|
OUTPUT_NODE = False |
|
|
|
CATEGORY = "Comfyroll/Latent" |
|
|
|
def batchsize(self, latent: tg.Sequence[tg.Mapping[tg.Text, torch.Tensor]], batch_size: int): |
|
samples = latent['samples'] |
|
shape = samples.shape |
|
|
|
sample_list = [samples] + [ |
|
torch.clone(samples) for _ in range(batch_size - 1) |
|
] |
|
|
|
return ({ |
|
'samples': torch.cat(sample_list), |
|
}, ) |
|
|
|
|
|
|
|
|
|
class Comfyroll_ApplyLoRA_Stack: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return {"required": {"model": ("MODEL",), |
|
"clip": ("CLIP", ), |
|
"lora_stack": ("LORA_STACK", ), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MODEL", "CLIP",) |
|
RETURN_NAMES = ("MODEL", "CLIP", ) |
|
FUNCTION = "apply_lora_stack" |
|
CATEGORY = "Comfyroll/IO" |
|
|
|
def apply_lora_stack(self, model, clip, lora_stack=None,): |
|
|
|
|
|
lora_params = list() |
|
|
|
|
|
if lora_stack: |
|
lora_params.extend(lora_stack) |
|
else: |
|
return (model, clip,) |
|
|
|
|
|
|
|
|
|
model_lora = model |
|
clip_lora = clip |
|
|
|
|
|
for tup in lora_params: |
|
lora_name, strength_model, strength_clip = tup |
|
print(lora_name, strength_model, strength_clip) |
|
|
|
lora_path = folder_paths.get_full_path("loras", lora_name) |
|
lora = comfy.utils.load_torch_file(lora_path, safe_load=True) |
|
|
|
model_lora, clip_lora = comfy.sd.load_lora_for_models(model_lora, clip_lora, lora, strength_model, strength_clip) |
|
|
|
return (model_lora, clip_lora,) |
|
|
|
|
|
|
|
|
|
class Comfyroll_LoRA_Stack: |
|
|
|
loras = ["None"] + folder_paths.get_filename_list("loras") |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return {"required": { |
|
"switch_1": ([ |
|
"Off", |
|
"On"],), |
|
"lora_name_1": (cls.loras,), |
|
"model_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
"clip_weight_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
"switch_2": ([ |
|
"Off", |
|
"On"],), |
|
"lora_name_2": (cls.loras,), |
|
"model_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
"clip_weight_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
"switch_3": ([ |
|
"Off", |
|
"On"],), |
|
"lora_name_3": (cls.loras,), |
|
"model_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
"clip_weight_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), |
|
}, |
|
"optional": {"lora_stack": ("LORA_STACK",) |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("LORA_STACK",) |
|
RETURN_NAMES = ("LORA_STACK",) |
|
FUNCTION = "lora_stacker" |
|
CATEGORY = "Comfyroll/IO" |
|
|
|
def lora_stacker(self, lora_name_1, model_weight_1, clip_weight_1, switch_1, lora_name_2, model_weight_2, clip_weight_2, switch_2, lora_name_3, model_weight_3, clip_weight_3, switch_3, lora_stack=None): |
|
|
|
|
|
lora_list=list() |
|
|
|
if lora_stack is not None: |
|
lora_list.extend([l for l in lora_stack if l[0] != "None"]) |
|
|
|
if lora_name_1 != "None" and switch_1 == "On": |
|
lora_list.extend([(lora_name_1, model_weight_1, clip_weight_1)]), |
|
|
|
if lora_name_2 != "None" and switch_2 == "On": |
|
lora_list.extend([(lora_name_2, model_weight_2, clip_weight_2)]), |
|
|
|
if lora_name_3 != "None" and switch_3 == "On": |
|
lora_list.extend([(lora_name_3, model_weight_3, clip_weight_3)]), |
|
|
|
return (lora_list,) |
|
|
|
|
|
|
|
|
|
|
|
|
|
''' |
|
NODE_CLASS_MAPPINGS = { |
|
"CR Image Input Switch": ComfyRoll_InputImages, |
|
"CR Image Input Switch (4 way)": ComfyRoll_InputImages_4way, |
|
"CR Latent Input Switch": ComfyRoll_InputLatents, |
|
"CR Process Switch": ComfyRoll_InputLatentsText, |
|
"CR Conditioning Input Switch": ComfyRoll_InputConditioning, |
|
"CR Clip Input Switch": ComfyRoll_InputClip, |
|
"CR Model Input Switch": ComfyRoll_InputModel, |
|
"CR ControlNet Input Switch": ComfyRoll_InputControlNet, |
|
"CR Load LoRA": ComfyRoll_LoraLoader, |
|
"CR Apply ControlNet": ComfyRoll_ApplyControlNet, |
|
"CR Image Size": ComfyRoll_ImageSize_Float, |
|
"CR Image Output": ComfyRoll_ImageOutput, |
|
"CR Integer Multiple": CR_Int_Multiple_Of, |
|
"CR Aspect Ratio": ComfyRoll_AspectRatio, |
|
"CR Aspect Ratio SDXL": ComfyRoll_AspectRatio_SDXL, |
|
"CR Seed to Int": ComfyRoll_SeedToInt, |
|
"CR Color Tint": Comfyroll_Color_Tint, |
|
"CR SDXL Prompt Mixer": ComfyRoll_prompt_mixer, |
|
"CR SDXL Style Text": Comfyroll_SDXLStyleText, |
|
"CR SDXL Base Prompt Encoder": Comfyroll_SDXLBasePromptEncoder, |
|
"CR Hires Fix Process Switch": ComfyRoll_HiResFixSwitch, |
|
"CR Halftones" :Comfyroll_Halftone_Grid, |
|
"CR LoRA Stack":Comfyroll_LoRA_Stack, |
|
"CR Apply LoRA Stack":Comfyroll_ApplyLoRA_Stack, |
|
"CR Latent Batch Size":Comfyroll_LatentBatchSize |
|
} |
|
''' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|