albertvillanova HF staff commited on
Commit
92d794a
1 Parent(s): a9bb75b

Convert dataset to Parquet (#4)

Browse files

- Convert dataset to Parquet (24c2ae4e21b066725683a3acdd80c8454acb7453)
- Delete loading script (f0019503d0edfbcef3ce534c26a7a646595854e9)

README.md CHANGED
@@ -5,8 +5,6 @@ language_creators:
5
  - machine-generated
6
  language:
7
  - it
8
- language_bcp47:
9
- - it-IT
10
  license:
11
  - unknown
12
  multilinguality:
@@ -22,6 +20,8 @@ task_ids:
22
  - extractive-qa
23
  paperswithcode_id: squad-it
24
  pretty_name: SQuAD-it
 
 
25
  dataset_info:
26
  features:
27
  - name: id
@@ -38,13 +38,20 @@ dataset_info:
38
  dtype: int32
39
  splits:
40
  - name: train
41
- num_bytes: 50864824
42
  num_examples: 54159
43
  - name: test
44
- num_bytes: 7858336
45
  num_examples: 7609
46
- download_size: 8776531
47
- dataset_size: 58723160
 
 
 
 
 
 
 
48
  ---
49
 
50
  # Dataset Card for "squad_it"
 
5
  - machine-generated
6
  language:
7
  - it
 
 
8
  license:
9
  - unknown
10
  multilinguality:
 
20
  - extractive-qa
21
  paperswithcode_id: squad-it
22
  pretty_name: SQuAD-it
23
+ language_bcp47:
24
+ - it-IT
25
  dataset_info:
26
  features:
27
  - name: id
 
38
  dtype: int32
39
  splits:
40
  - name: train
41
+ num_bytes: 50864680
42
  num_examples: 54159
43
  - name: test
44
+ num_bytes: 7858312
45
  num_examples: 7609
46
+ download_size: 13797580
47
+ dataset_size: 58722992
48
+ configs:
49
+ - config_name: default
50
+ data_files:
51
+ - split: train
52
+ path: data/train-*
53
+ - split: test
54
+ path: data/test-*
55
  ---
56
 
57
  # Dataset Card for "squad_it"
data/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72eb99d7e396079f5f97d2a4a0322afd9f186539318d22c522456fc966802f5d
3
+ size 1624373
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61afb4156ad32e349e33e4d82bb97bca8f2195863bf070c2fdd6d00c4b1c76bd
3
+ size 12173207
squad_it.py DELETED
@@ -1,116 +0,0 @@
1
- """TODO(squad_it): Add a description here."""
2
-
3
-
4
- import json
5
-
6
- import datasets
7
- from datasets.tasks import QuestionAnsweringExtractive
8
-
9
-
10
- # TODO(squad_it): BibTeX citation
11
- _CITATION = """\
12
- @InProceedings{10.1007/978-3-030-03840-3_29,
13
- author={Croce, Danilo and Zelenanska, Alexandra and Basili, Roberto},
14
- editor={Ghidini, Chiara and Magnini, Bernardo and Passerini, Andrea and Traverso, Paolo",
15
- title={Neural Learning for Question Answering in Italian},
16
- booktitle={AI*IA 2018 -- Advances in Artificial Intelligence},
17
- year={2018},
18
- publisher={Springer International Publishing},
19
- address={Cham},
20
- pages={389--402},
21
- isbn={978-3-030-03840-3}
22
- }
23
- """
24
-
25
- # TODO(squad_it):
26
- _DESCRIPTION = """\
27
- SQuAD-it is derived from the SQuAD dataset and it is obtained through semi-automatic translation of the SQuAD dataset
28
- into Italian. It represents a large-scale dataset for open question answering processes on factoid questions in Italian.
29
- The dataset contains more than 60,000 question/answer pairs derived from the original English dataset. The dataset is
30
- split into training and test sets to support the replicability of the benchmarking of QA systems:
31
- """
32
-
33
- _URL = "https://github.com/crux82/squad-it/raw/master/"
34
- _URLS = {
35
- "train": _URL + "SQuAD_it-train.json.gz",
36
- "test": _URL + "SQuAD_it-test.json.gz",
37
- }
38
-
39
-
40
- class SquadIt(datasets.GeneratorBasedBuilder):
41
- """TODO(squad_it): Short description of my dataset."""
42
-
43
- # TODO(squad_it): Set up version.
44
- VERSION = datasets.Version("0.1.0")
45
-
46
- def _info(self):
47
- # TODO(squad_it): Specifies the datasets.DatasetInfo object
48
- return datasets.DatasetInfo(
49
- # This is the description that will appear on the datasets page.
50
- description=_DESCRIPTION,
51
- # datasets.features.FeatureConnectors
52
- features=datasets.Features(
53
- {
54
- "id": datasets.Value("string"),
55
- "context": datasets.Value("string"),
56
- "question": datasets.Value("string"),
57
- "answers": datasets.features.Sequence(
58
- {
59
- "text": datasets.Value("string"),
60
- "answer_start": datasets.Value("int32"),
61
- }
62
- ),
63
- # These are the features of your dataset like images, labels ...
64
- }
65
- ),
66
- # If there's a common (input, target) tuple from the features,
67
- # specify them here. They'll be used if as_supervised=True in
68
- # builder.as_dataset.
69
- supervised_keys=None,
70
- # Homepage of the dataset for documentation
71
- homepage="https://github.com/crux82/squad-it",
72
- citation=_CITATION,
73
- task_templates=[
74
- QuestionAnsweringExtractive(
75
- question_column="question", context_column="context", answers_column="answers"
76
- )
77
- ],
78
- )
79
-
80
- def _split_generators(self, dl_manager):
81
- """Returns SplitGenerators."""
82
- # TODO(squad_it): Downloads the data and defines the splits
83
- # dl_manager is a datasets.download.DownloadManager that can be used to
84
- # download and extract URLs
85
- urls_to_download = _URLS
86
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
87
-
88
- return [
89
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
90
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
91
- ]
92
-
93
- def _generate_examples(self, filepath):
94
- """Yields examples."""
95
- # TODO(squad_it): Yields (key, example) tuples from the dataset
96
- with open(filepath, encoding="utf-8") as f:
97
- data = json.load(f)
98
- for example in data["data"]:
99
- for paragraph in example["paragraphs"]:
100
- context = paragraph["context"].strip()
101
- for qa in paragraph["qas"]:
102
- question = qa["question"].strip()
103
- id_ = qa["id"]
104
-
105
- answer_starts = [answer["answer_start"] for answer in qa["answers"]]
106
- answers = [answer["text"].strip() for answer in qa["answers"]]
107
-
108
- yield id_, {
109
- "context": context,
110
- "question": question,
111
- "id": id_,
112
- "answers": {
113
- "answer_start": answer_starts,
114
- "text": answers,
115
- },
116
- }