Datasets:

Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
shopping-queries-image-dataset / shopping-queries-image-dataset.py
cwchen-cm's picture
Add dataset loading script
fc258e3 verified
raw
history blame
9.78 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import json
import os
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{SIGIR-eCom 2024,
title = {Shopping Queries Image Dataset (SQID): An Image-Enriched ESCI Dataset for Exploring Multimodal Learning in Product Search},
author={Marie Al Ghossein, Ching-Wei Chen, Jason Tang},
year={2024}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
The Shopping Queries Image Dataset (SQID) is an extension of the Amazon Shopping Queries Dataset which has been enriched with image information associated with 190,000 products.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "MIT"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_BASE_URL = "https://huggingface.co/datasets/crossingminds/shopping-queries-image-dataset/data"
_URLS = {
"product_image_urls": "https://huggingface.co/datasets/crossingminds/shopping-queries-image-dataset/data/product_image_urls.parquet",
"product_features": "https://huggingface.co/datasets/crossingminds/shopping-queries-image-dataset/data/product_features.parquet",
"query_features": "https://huggingface.co/datasets/crossingminds/shopping-queries-image-dataset/data/query_features.parquet",
"supp_product_image_urls": "https://huggingface.co/datasets/crossingminds/shopping-queries-image-dataset/data/supp_product_image_urls.parquet",
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class ShoppingQueriesImageDataset(datasets.GeneratorBasedBuilder):
"""Shopping Queries Image Dataset"""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="product_image_urls", version=VERSION, description="Image URLs for products"),
datasets.BuilderConfig(name="product_features", version=VERSION, description="CLIP embeddings for products"),
datasets.BuilderConfig(name="query_features", version=VERSION, description="CLIP embeddings for queries"),
datasets.BuilderConfig(name="supp_product_image_urls", version=VERSION, description="Image URLs for supplemental set of products"),
]
DEFAULT_CONFIG_NAME = "product_image_urls"
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if self.config.name == "product_image_urls":
features = datasets.Features(
{
"product_id": datasets.Value("string"),
"image_url": datasets.Value("string")
}
)
elif self.config.name == "product_features":
features = datasets.Features(
{
"product_id": datasets.Value("string"),
"clip_text_features": datasets.Sequence(datasets.Value("float32")),
"clip_image_features": datasets.Sequence(datasets.Value("float32"))
}
)
elif self.config.name == "query_features":
features = datasets.Features(
{
"query_id": datasets.Value("string"),
"clip_text_features": datasets.Sequence(datasets.Value("float32"))
}
)
elif self.config.name == "product_features":
features = datasets.Features(
{
"product_id": datasets.Value("string"),
"image_url": datasets.Value("string")
}
)
else:
raise ValueError(f"Invalid configuration name: {self.config.name}")
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
data_path = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_path,
"split": "train",
},
),
#datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": os.path.join(data_dir, "dev.jsonl"),
# "split": "dev",
# },
#),
#datasets.SplitGenerator(
# name=datasets.Split.TEST,
# # These kwargs will be passed to _generate_examples
# gen_kwargs={
# "filepath": os.path.join(data_dir, "test.jsonl"),
# "split": "test"
# },
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "product_image_urls":
# Yields examples as (key, example) tuples
yield key, {
"product_id": data["product_id"],
"image_url": data["image_url"]
}
elif self.config_name == "product_features":
yield key, {
"product_id": data["product_id"],
"clip_text_features": data["clip_text_features"],
"clip_image_features": data["clip_image_features"],
}
elif self.config_name == "query_features":
yield key, {
"query_id": data["query_id"],
"clip_text_features": data["clip_text_features"],
}
elif self.config_name == "supp_product_image_urls":
yield key, {
"product_id": data["product_id"],
"image_url": data["image_url"]
}
else:
raise ValueError(f"Unknown config name: {self.config_name}")