|
{ |
|
"results": { |
|
"omnis-voluptatibus_lsat-rc_base": { |
|
"acc,none": 0.26022304832713755, |
|
"acc_stderr,none": 0.02680130130545777, |
|
"alias": "omnis-voluptatibus_lsat-rc_base" |
|
}, |
|
"omnis-voluptatibus_lsat-lr_base": { |
|
"acc,none": 0.22549019607843138, |
|
"acc_stderr,none": 0.018523301713974177, |
|
"alias": "omnis-voluptatibus_lsat-lr_base" |
|
}, |
|
"omnis-voluptatibus_lsat-ar_base": { |
|
"acc,none": 0.2, |
|
"acc_stderr,none": 0.026432744018203558, |
|
"alias": "omnis-voluptatibus_lsat-ar_base" |
|
}, |
|
"omnis-voluptatibus_logiqa_base": { |
|
"acc,none": 0.2731629392971246, |
|
"acc_stderr,none": 0.017823353125231246, |
|
"alias": "omnis-voluptatibus_logiqa_base" |
|
}, |
|
"omnis-voluptatibus_logiqa2_base": { |
|
"acc,none": 0.29961832061068705, |
|
"acc_stderr,none": 0.011557488735539868, |
|
"alias": "omnis-voluptatibus_logiqa2_base" |
|
}, |
|
"magnam-eius_lsat-rc_base": { |
|
"acc,none": 0.26765799256505574, |
|
"acc_stderr,none": 0.027044545314587297, |
|
"alias": "magnam-eius_lsat-rc_base" |
|
}, |
|
"magnam-eius_lsat-lr_base": { |
|
"acc,none": 0.23333333333333334, |
|
"acc_stderr,none": 0.018747043716590736, |
|
"alias": "magnam-eius_lsat-lr_base" |
|
}, |
|
"magnam-eius_lsat-ar_base": { |
|
"acc,none": 0.1956521739130435, |
|
"acc_stderr,none": 0.026214799709819582, |
|
"alias": "magnam-eius_lsat-ar_base" |
|
}, |
|
"magnam-eius_logiqa_base": { |
|
"acc,none": 0.26517571884984026, |
|
"acc_stderr,none": 0.017657069155771605, |
|
"alias": "magnam-eius_logiqa_base" |
|
}, |
|
"magnam-eius_logiqa2_base": { |
|
"acc,none": 0.30025445292620867, |
|
"acc_stderr,none": 0.011564495931583802, |
|
"alias": "magnam-eius_logiqa2_base" |
|
}, |
|
"libero-exercitationem_lsat-rc_base": { |
|
"acc,none": 0.2899628252788104, |
|
"acc_stderr,none": 0.0277168778552269, |
|
"alias": "libero-exercitationem_lsat-rc_base" |
|
}, |
|
"libero-exercitationem_lsat-lr_base": { |
|
"acc,none": 0.23333333333333334, |
|
"acc_stderr,none": 0.01874704371659074, |
|
"alias": "libero-exercitationem_lsat-lr_base" |
|
}, |
|
"libero-exercitationem_lsat-ar_base": { |
|
"acc,none": 0.2565217391304348, |
|
"acc_stderr,none": 0.02885881431530565, |
|
"alias": "libero-exercitationem_lsat-ar_base" |
|
}, |
|
"libero-exercitationem_logiqa_base": { |
|
"acc,none": 0.3003194888178914, |
|
"acc_stderr,none": 0.01833587493212361, |
|
"alias": "libero-exercitationem_logiqa_base" |
|
}, |
|
"libero-exercitationem_logiqa2_base": { |
|
"acc,none": 0.2913486005089059, |
|
"acc_stderr,none": 0.011463961006875415, |
|
"alias": "libero-exercitationem_logiqa2_base" |
|
}, |
|
"illum-eaque_lsat-rc_base": { |
|
"acc,none": 0.30855018587360594, |
|
"acc_stderr,none": 0.02821472627233907, |
|
"alias": "illum-eaque_lsat-rc_base" |
|
}, |
|
"illum-eaque_lsat-lr_base": { |
|
"acc,none": 0.23529411764705882, |
|
"acc_stderr,none": 0.018801558887410308, |
|
"alias": "illum-eaque_lsat-lr_base" |
|
}, |
|
"illum-eaque_lsat-ar_base": { |
|
"acc,none": 0.21304347826086956, |
|
"acc_stderr,none": 0.027057754389936205, |
|
"alias": "illum-eaque_lsat-ar_base" |
|
}, |
|
"illum-eaque_logiqa_base": { |
|
"acc,none": 0.2715654952076677, |
|
"acc_stderr,none": 0.017790679673144884, |
|
"alias": "illum-eaque_logiqa_base" |
|
}, |
|
"illum-eaque_logiqa2_base": { |
|
"acc,none": 0.28944020356234096, |
|
"acc_stderr,none": 0.011441728828144178, |
|
"alias": "illum-eaque_logiqa2_base" |
|
}, |
|
"amet-ullam_lsat-rc_base": { |
|
"acc,none": 0.2936802973977695, |
|
"acc_stderr,none": 0.027820867578650918, |
|
"alias": "amet-ullam_lsat-rc_base" |
|
}, |
|
"amet-ullam_lsat-lr_base": { |
|
"acc,none": 0.2235294117647059, |
|
"acc_stderr,none": 0.018465920069400513, |
|
"alias": "amet-ullam_lsat-lr_base" |
|
}, |
|
"amet-ullam_lsat-ar_base": { |
|
"acc,none": 0.21739130434782608, |
|
"acc_stderr,none": 0.027256850838819964, |
|
"alias": "amet-ullam_lsat-ar_base" |
|
}, |
|
"amet-ullam_logiqa_base": { |
|
"acc,none": 0.28434504792332266, |
|
"acc_stderr,none": 0.018044076774157373, |
|
"alias": "amet-ullam_logiqa_base" |
|
}, |
|
"amet-ullam_logiqa2_base": { |
|
"acc,none": 0.2881679389312977, |
|
"acc_stderr,none": 0.011426770634965262, |
|
"alias": "amet-ullam_logiqa2_base" |
|
}, |
|
"accusantium-inventore_lsat-rc_base": { |
|
"acc,none": 0.2936802973977695, |
|
"acc_stderr,none": 0.02782086757865092, |
|
"alias": "accusantium-inventore_lsat-rc_base" |
|
}, |
|
"accusantium-inventore_lsat-lr_base": { |
|
"acc,none": 0.20980392156862746, |
|
"acc_stderr,none": 0.01804742911247611, |
|
"alias": "accusantium-inventore_lsat-lr_base" |
|
}, |
|
"accusantium-inventore_lsat-ar_base": { |
|
"acc,none": 0.23043478260869565, |
|
"acc_stderr,none": 0.027827807522276156, |
|
"alias": "accusantium-inventore_lsat-ar_base" |
|
}, |
|
"accusantium-inventore_logiqa_base": { |
|
"acc,none": 0.3019169329073482, |
|
"acc_stderr,none": 0.018363576929614513, |
|
"alias": "accusantium-inventore_logiqa_base" |
|
}, |
|
"accusantium-inventore_logiqa2_base": { |
|
"acc,none": 0.2913486005089059, |
|
"acc_stderr,none": 0.011463961006875417, |
|
"alias": "accusantium-inventore_logiqa2_base" |
|
} |
|
}, |
|
"configs": { |
|
"accusantium-inventore_logiqa2_base": { |
|
"task": "accusantium-inventore_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "accusantium-inventore-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"accusantium-inventore_logiqa_base": { |
|
"task": "accusantium-inventore_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "accusantium-inventore-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"accusantium-inventore_lsat-ar_base": { |
|
"task": "accusantium-inventore_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "accusantium-inventore-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"accusantium-inventore_lsat-lr_base": { |
|
"task": "accusantium-inventore_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "accusantium-inventore-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"accusantium-inventore_lsat-rc_base": { |
|
"task": "accusantium-inventore_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "accusantium-inventore-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"amet-ullam_logiqa2_base": { |
|
"task": "amet-ullam_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "amet-ullam-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"amet-ullam_logiqa_base": { |
|
"task": "amet-ullam_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "amet-ullam-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"amet-ullam_lsat-ar_base": { |
|
"task": "amet-ullam_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "amet-ullam-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"amet-ullam_lsat-lr_base": { |
|
"task": "amet-ullam_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "amet-ullam-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"amet-ullam_lsat-rc_base": { |
|
"task": "amet-ullam_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "amet-ullam-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"illum-eaque_logiqa2_base": { |
|
"task": "illum-eaque_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "illum-eaque-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"illum-eaque_logiqa_base": { |
|
"task": "illum-eaque_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "illum-eaque-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"illum-eaque_lsat-ar_base": { |
|
"task": "illum-eaque_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "illum-eaque-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"illum-eaque_lsat-lr_base": { |
|
"task": "illum-eaque_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "illum-eaque-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"illum-eaque_lsat-rc_base": { |
|
"task": "illum-eaque_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "illum-eaque-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"libero-exercitationem_logiqa2_base": { |
|
"task": "libero-exercitationem_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "libero-exercitationem-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"libero-exercitationem_logiqa_base": { |
|
"task": "libero-exercitationem_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "libero-exercitationem-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"libero-exercitationem_lsat-ar_base": { |
|
"task": "libero-exercitationem_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "libero-exercitationem-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"libero-exercitationem_lsat-lr_base": { |
|
"task": "libero-exercitationem_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "libero-exercitationem-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"libero-exercitationem_lsat-rc_base": { |
|
"task": "libero-exercitationem_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "libero-exercitationem-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"magnam-eius_logiqa2_base": { |
|
"task": "magnam-eius_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "magnam-eius-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"magnam-eius_logiqa_base": { |
|
"task": "magnam-eius_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "magnam-eius-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"magnam-eius_lsat-ar_base": { |
|
"task": "magnam-eius_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "magnam-eius-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"magnam-eius_lsat-lr_base": { |
|
"task": "magnam-eius_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "magnam-eius-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"magnam-eius_lsat-rc_base": { |
|
"task": "magnam-eius_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "magnam-eius-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"omnis-voluptatibus_logiqa2_base": { |
|
"task": "omnis-voluptatibus_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "omnis-voluptatibus-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"omnis-voluptatibus_logiqa_base": { |
|
"task": "omnis-voluptatibus_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "omnis-voluptatibus-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"omnis-voluptatibus_lsat-ar_base": { |
|
"task": "omnis-voluptatibus_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "omnis-voluptatibus-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"omnis-voluptatibus_lsat-lr_base": { |
|
"task": "omnis-voluptatibus_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "omnis-voluptatibus-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"omnis-voluptatibus_lsat-rc_base": { |
|
"task": "omnis-voluptatibus_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "omnis-voluptatibus-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"accusantium-inventore_logiqa2_base": 0.0, |
|
"accusantium-inventore_logiqa_base": 0.0, |
|
"accusantium-inventore_lsat-ar_base": 0.0, |
|
"accusantium-inventore_lsat-lr_base": 0.0, |
|
"accusantium-inventore_lsat-rc_base": 0.0, |
|
"amet-ullam_logiqa2_base": 0.0, |
|
"amet-ullam_logiqa_base": 0.0, |
|
"amet-ullam_lsat-ar_base": 0.0, |
|
"amet-ullam_lsat-lr_base": 0.0, |
|
"amet-ullam_lsat-rc_base": 0.0, |
|
"illum-eaque_logiqa2_base": 0.0, |
|
"illum-eaque_logiqa_base": 0.0, |
|
"illum-eaque_lsat-ar_base": 0.0, |
|
"illum-eaque_lsat-lr_base": 0.0, |
|
"illum-eaque_lsat-rc_base": 0.0, |
|
"libero-exercitationem_logiqa2_base": 0.0, |
|
"libero-exercitationem_logiqa_base": 0.0, |
|
"libero-exercitationem_lsat-ar_base": 0.0, |
|
"libero-exercitationem_lsat-lr_base": 0.0, |
|
"libero-exercitationem_lsat-rc_base": 0.0, |
|
"magnam-eius_logiqa2_base": 0.0, |
|
"magnam-eius_logiqa_base": 0.0, |
|
"magnam-eius_lsat-ar_base": 0.0, |
|
"magnam-eius_lsat-lr_base": 0.0, |
|
"magnam-eius_lsat-rc_base": 0.0, |
|
"omnis-voluptatibus_logiqa2_base": 0.0, |
|
"omnis-voluptatibus_logiqa_base": 0.0, |
|
"omnis-voluptatibus_lsat-ar_base": 0.0, |
|
"omnis-voluptatibus_lsat-lr_base": 0.0, |
|
"omnis-voluptatibus_lsat-rc_base": 0.0 |
|
}, |
|
"n-shot": { |
|
"accusantium-inventore_logiqa2_base": 0, |
|
"accusantium-inventore_logiqa_base": 0, |
|
"accusantium-inventore_lsat-ar_base": 0, |
|
"accusantium-inventore_lsat-lr_base": 0, |
|
"accusantium-inventore_lsat-rc_base": 0, |
|
"amet-ullam_logiqa2_base": 0, |
|
"amet-ullam_logiqa_base": 0, |
|
"amet-ullam_lsat-ar_base": 0, |
|
"amet-ullam_lsat-lr_base": 0, |
|
"amet-ullam_lsat-rc_base": 0, |
|
"illum-eaque_logiqa2_base": 0, |
|
"illum-eaque_logiqa_base": 0, |
|
"illum-eaque_lsat-ar_base": 0, |
|
"illum-eaque_lsat-lr_base": 0, |
|
"illum-eaque_lsat-rc_base": 0, |
|
"libero-exercitationem_logiqa2_base": 0, |
|
"libero-exercitationem_logiqa_base": 0, |
|
"libero-exercitationem_lsat-ar_base": 0, |
|
"libero-exercitationem_lsat-lr_base": 0, |
|
"libero-exercitationem_lsat-rc_base": 0, |
|
"magnam-eius_logiqa2_base": 0, |
|
"magnam-eius_logiqa_base": 0, |
|
"magnam-eius_lsat-ar_base": 0, |
|
"magnam-eius_lsat-lr_base": 0, |
|
"magnam-eius_lsat-rc_base": 0, |
|
"omnis-voluptatibus_logiqa2_base": 0, |
|
"omnis-voluptatibus_logiqa_base": 0, |
|
"omnis-voluptatibus_lsat-ar_base": 0, |
|
"omnis-voluptatibus_lsat-lr_base": 0, |
|
"omnis-voluptatibus_lsat-rc_base": 0 |
|
}, |
|
"config": { |
|
"model": "vllm", |
|
"model_args": "pretrained=01-ai/Yi-6B,revision=main,dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.9,trust_remote_code=true,max_length=4096", |
|
"batch_size": "auto", |
|
"batch_sizes": [], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null |
|
}, |
|
"git_hash": "5044cf9" |
|
} |