|
{ |
|
"results": { |
|
"necessitatibus-minima-6939_logiqa2_base": { |
|
"acc,none": 0.2907124681933842, |
|
"acc_stderr,none": 0.011456577557813215, |
|
"alias": "necessitatibus-minima-6939_logiqa2_base" |
|
}, |
|
"necessitatibus-minima-6939_logiqa_base": { |
|
"acc,none": 0.29073482428115016, |
|
"acc_stderr,none": 0.0181640562091778, |
|
"alias": "necessitatibus-minima-6939_logiqa_base" |
|
}, |
|
"necessitatibus-minima-6939_lsat-ar_base": { |
|
"acc,none": 0.21739130434782608, |
|
"acc_stderr,none": 0.02725685083881996, |
|
"alias": "necessitatibus-minima-6939_lsat-ar_base" |
|
}, |
|
"necessitatibus-minima-6939_lsat-lr_base": { |
|
"acc,none": 0.22549019607843138, |
|
"acc_stderr,none": 0.01852330171397417, |
|
"alias": "necessitatibus-minima-6939_lsat-lr_base" |
|
}, |
|
"necessitatibus-minima-6939_lsat-rc_base": { |
|
"acc,none": 0.30855018587360594, |
|
"acc_stderr,none": 0.02821472627233907, |
|
"alias": "necessitatibus-minima-6939_lsat-rc_base" |
|
} |
|
}, |
|
"configs": { |
|
"necessitatibus-minima-6939_logiqa2_base": { |
|
"task": "necessitatibus-minima-6939_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "cot-leaderboard/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "necessitatibus-minima-6939-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"necessitatibus-minima-6939_logiqa_base": { |
|
"task": "necessitatibus-minima-6939_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "cot-leaderboard/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "necessitatibus-minima-6939-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"necessitatibus-minima-6939_lsat-ar_base": { |
|
"task": "necessitatibus-minima-6939_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "cot-leaderboard/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "necessitatibus-minima-6939-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"necessitatibus-minima-6939_lsat-lr_base": { |
|
"task": "necessitatibus-minima-6939_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "cot-leaderboard/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "necessitatibus-minima-6939-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"necessitatibus-minima-6939_lsat-rc_base": { |
|
"task": "necessitatibus-minima-6939_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "cot-leaderboard/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "necessitatibus-minima-6939-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"necessitatibus-minima-6939_logiqa2_base": 0.0, |
|
"necessitatibus-minima-6939_logiqa_base": 0.0, |
|
"necessitatibus-minima-6939_lsat-ar_base": 0.0, |
|
"necessitatibus-minima-6939_lsat-lr_base": 0.0, |
|
"necessitatibus-minima-6939_lsat-rc_base": 0.0 |
|
}, |
|
"n-shot": { |
|
"necessitatibus-minima-6939_logiqa2_base": 0, |
|
"necessitatibus-minima-6939_logiqa_base": 0, |
|
"necessitatibus-minima-6939_lsat-ar_base": 0, |
|
"necessitatibus-minima-6939_lsat-lr_base": 0, |
|
"necessitatibus-minima-6939_lsat-rc_base": 0 |
|
}, |
|
"config": { |
|
"model": "vllm", |
|
"model_args": "pretrained=meta-llama/Llama-2-13b-hf,revision=main,dtype=float16,tensor_parallel_size=2,gpu_memory_utilization=0.7,trust_remote_code=true,max_length=2048", |
|
"batch_size": "auto", |
|
"batch_sizes": [], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null |
|
}, |
|
"git_hash": "fa353d4" |
|
} |