cot-eval-results / data /microsoft /phi-2 /base /24-02-05-18:00:45.json
ggbetz's picture
Upload results for model microsoft/phi-2 (#10)
bb3b623 verified
raw
history blame
56.5 kB
{
"results": {
"repellendus-laborum_lsat-rc_base": {
"acc,none": 0.26765799256505574,
"acc_stderr,none": 0.0270445453145873,
"alias": "repellendus-laborum_lsat-rc_base"
},
"repellendus-laborum_lsat-lr_base": {
"acc,none": 0.23137254901960785,
"acc_stderr,none": 0.018691965462419517,
"alias": "repellendus-laborum_lsat-lr_base"
},
"repellendus-laborum_lsat-ar_base": {
"acc,none": 0.25217391304347825,
"acc_stderr,none": 0.028696745294493366,
"alias": "repellendus-laborum_lsat-ar_base"
},
"repellendus-laborum_logiqa_base": {
"acc,none": 0.29073482428115016,
"acc_stderr,none": 0.0181640562091778,
"alias": "repellendus-laborum_logiqa_base"
},
"repellendus-laborum_logiqa2_base": {
"acc,none": 0.29389312977099236,
"acc_stderr,none": 0.011493223255677107,
"alias": "repellendus-laborum_logiqa2_base"
},
"possimus-voluptate_lsat-rc_base": {
"acc,none": 0.2527881040892193,
"acc_stderr,none": 0.026548061072649957,
"alias": "possimus-voluptate_lsat-rc_base"
},
"possimus-voluptate_lsat-lr_base": {
"acc,none": 0.22941176470588234,
"acc_stderr,none": 0.01863631913244453,
"alias": "possimus-voluptate_lsat-lr_base"
},
"possimus-voluptate_lsat-ar_base": {
"acc,none": 0.21739130434782608,
"acc_stderr,none": 0.02725685083881996,
"alias": "possimus-voluptate_lsat-ar_base"
},
"possimus-voluptate_logiqa_base": {
"acc,none": 0.2795527156549521,
"acc_stderr,none": 0.017951178003680606,
"alias": "possimus-voluptate_logiqa_base"
},
"possimus-voluptate_logiqa2_base": {
"acc,none": 0.2926208651399491,
"acc_stderr,none": 0.01147864633663911,
"alias": "possimus-voluptate_logiqa2_base"
},
"maxime-expedita_lsat-rc_base": {
"acc,none": 0.2527881040892193,
"acc_stderr,none": 0.026548061072649953,
"alias": "maxime-expedita_lsat-rc_base"
},
"maxime-expedita_lsat-lr_base": {
"acc,none": 0.24705882352941178,
"acc_stderr,none": 0.019117091440867724,
"alias": "maxime-expedita_lsat-lr_base"
},
"maxime-expedita_lsat-ar_base": {
"acc,none": 0.23478260869565218,
"acc_stderr,none": 0.028009647070930132,
"alias": "maxime-expedita_lsat-ar_base"
},
"maxime-expedita_logiqa_base": {
"acc,none": 0.2971246006389776,
"acc_stderr,none": 0.018279674935144995,
"alias": "maxime-expedita_logiqa_base"
},
"maxime-expedita_logiqa2_base": {
"acc,none": 0.27099236641221375,
"acc_stderr,none": 0.011213894711527516,
"alias": "maxime-expedita_logiqa2_base"
},
"eveniet-ea_lsat-rc_base": {
"acc,none": 0.2899628252788104,
"acc_stderr,none": 0.027716877855226897,
"alias": "eveniet-ea_lsat-rc_base"
},
"eveniet-ea_lsat-lr_base": {
"acc,none": 0.23333333333333334,
"acc_stderr,none": 0.01874704371659074,
"alias": "eveniet-ea_lsat-lr_base"
},
"eveniet-ea_lsat-ar_base": {
"acc,none": 0.2217391304347826,
"acc_stderr,none": 0.02745149660405891,
"alias": "eveniet-ea_lsat-ar_base"
},
"eveniet-ea_logiqa_base": {
"acc,none": 0.2955271565495208,
"acc_stderr,none": 0.018251174484565112,
"alias": "eveniet-ea_logiqa_base"
},
"eveniet-ea_logiqa2_base": {
"acc,none": 0.2837150127226463,
"acc_stderr,none": 0.011373548669758796,
"alias": "eveniet-ea_logiqa2_base"
},
"distinctio-unde_lsat-rc_base": {
"acc,none": 0.26394052044609667,
"acc_stderr,none": 0.026924155643902548,
"alias": "distinctio-unde_lsat-rc_base"
},
"distinctio-unde_lsat-lr_base": {
"acc,none": 0.2647058823529412,
"acc_stderr,none": 0.019554803257850088,
"alias": "distinctio-unde_lsat-lr_base"
},
"distinctio-unde_lsat-ar_base": {
"acc,none": 0.24347826086956523,
"acc_stderr,none": 0.028361099300075063,
"alias": "distinctio-unde_lsat-ar_base"
},
"distinctio-unde_logiqa_base": {
"acc,none": 0.3003194888178914,
"acc_stderr,none": 0.01833587493212361,
"alias": "distinctio-unde_logiqa_base"
},
"distinctio-unde_logiqa2_base": {
"acc,none": 0.2970737913486005,
"acc_stderr,none": 0.011529193947365896,
"alias": "distinctio-unde_logiqa2_base"
},
"aspernatur-sint_lsat-rc_base": {
"acc,none": 0.26765799256505574,
"acc_stderr,none": 0.027044545314587293,
"alias": "aspernatur-sint_lsat-rc_base"
},
"aspernatur-sint_lsat-lr_base": {
"acc,none": 0.27058823529411763,
"acc_stderr,none": 0.0196916426487322,
"alias": "aspernatur-sint_lsat-lr_base"
},
"aspernatur-sint_lsat-ar_base": {
"acc,none": 0.2217391304347826,
"acc_stderr,none": 0.027451496604058913,
"alias": "aspernatur-sint_lsat-ar_base"
},
"aspernatur-sint_logiqa_base": {
"acc,none": 0.2955271565495208,
"acc_stderr,none": 0.018251174484565112,
"alias": "aspernatur-sint_logiqa_base"
},
"aspernatur-sint_logiqa2_base": {
"acc,none": 0.2868956743002545,
"acc_stderr,none": 0.01141170254782954,
"alias": "aspernatur-sint_logiqa2_base"
}
},
"configs": {
"aspernatur-sint_logiqa2_base": {
"task": "aspernatur-sint_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "aspernatur-sint-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"aspernatur-sint_logiqa_base": {
"task": "aspernatur-sint_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "aspernatur-sint-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"aspernatur-sint_lsat-ar_base": {
"task": "aspernatur-sint_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "aspernatur-sint-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"aspernatur-sint_lsat-lr_base": {
"task": "aspernatur-sint_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "aspernatur-sint-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"aspernatur-sint_lsat-rc_base": {
"task": "aspernatur-sint_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "aspernatur-sint-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"distinctio-unde_logiqa2_base": {
"task": "distinctio-unde_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "distinctio-unde-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"distinctio-unde_logiqa_base": {
"task": "distinctio-unde_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "distinctio-unde-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"distinctio-unde_lsat-ar_base": {
"task": "distinctio-unde_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "distinctio-unde-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"distinctio-unde_lsat-lr_base": {
"task": "distinctio-unde_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "distinctio-unde-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"distinctio-unde_lsat-rc_base": {
"task": "distinctio-unde_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "distinctio-unde-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"eveniet-ea_logiqa2_base": {
"task": "eveniet-ea_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "eveniet-ea-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"eveniet-ea_logiqa_base": {
"task": "eveniet-ea_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "eveniet-ea-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"eveniet-ea_lsat-ar_base": {
"task": "eveniet-ea_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "eveniet-ea-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"eveniet-ea_lsat-lr_base": {
"task": "eveniet-ea_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "eveniet-ea-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"eveniet-ea_lsat-rc_base": {
"task": "eveniet-ea_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "eveniet-ea-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"maxime-expedita_logiqa2_base": {
"task": "maxime-expedita_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "maxime-expedita-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"maxime-expedita_logiqa_base": {
"task": "maxime-expedita_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "maxime-expedita-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"maxime-expedita_lsat-ar_base": {
"task": "maxime-expedita_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "maxime-expedita-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"maxime-expedita_lsat-lr_base": {
"task": "maxime-expedita_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "maxime-expedita-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"maxime-expedita_lsat-rc_base": {
"task": "maxime-expedita_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "maxime-expedita-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"possimus-voluptate_logiqa2_base": {
"task": "possimus-voluptate_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "possimus-voluptate-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"possimus-voluptate_logiqa_base": {
"task": "possimus-voluptate_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "possimus-voluptate-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"possimus-voluptate_lsat-ar_base": {
"task": "possimus-voluptate_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "possimus-voluptate-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"possimus-voluptate_lsat-lr_base": {
"task": "possimus-voluptate_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "possimus-voluptate-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"possimus-voluptate_lsat-rc_base": {
"task": "possimus-voluptate_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "possimus-voluptate-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"repellendus-laborum_logiqa2_base": {
"task": "repellendus-laborum_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "repellendus-laborum-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"repellendus-laborum_logiqa_base": {
"task": "repellendus-laborum_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "repellendus-laborum-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"repellendus-laborum_lsat-ar_base": {
"task": "repellendus-laborum_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "repellendus-laborum-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"repellendus-laborum_lsat-lr_base": {
"task": "repellendus-laborum_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "repellendus-laborum-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"repellendus-laborum_lsat-rc_base": {
"task": "repellendus-laborum_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "repellendus-laborum-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
}
},
"versions": {
"aspernatur-sint_logiqa2_base": 0.0,
"aspernatur-sint_logiqa_base": 0.0,
"aspernatur-sint_lsat-ar_base": 0.0,
"aspernatur-sint_lsat-lr_base": 0.0,
"aspernatur-sint_lsat-rc_base": 0.0,
"distinctio-unde_logiqa2_base": 0.0,
"distinctio-unde_logiqa_base": 0.0,
"distinctio-unde_lsat-ar_base": 0.0,
"distinctio-unde_lsat-lr_base": 0.0,
"distinctio-unde_lsat-rc_base": 0.0,
"eveniet-ea_logiqa2_base": 0.0,
"eveniet-ea_logiqa_base": 0.0,
"eveniet-ea_lsat-ar_base": 0.0,
"eveniet-ea_lsat-lr_base": 0.0,
"eveniet-ea_lsat-rc_base": 0.0,
"maxime-expedita_logiqa2_base": 0.0,
"maxime-expedita_logiqa_base": 0.0,
"maxime-expedita_lsat-ar_base": 0.0,
"maxime-expedita_lsat-lr_base": 0.0,
"maxime-expedita_lsat-rc_base": 0.0,
"possimus-voluptate_logiqa2_base": 0.0,
"possimus-voluptate_logiqa_base": 0.0,
"possimus-voluptate_lsat-ar_base": 0.0,
"possimus-voluptate_lsat-lr_base": 0.0,
"possimus-voluptate_lsat-rc_base": 0.0,
"repellendus-laborum_logiqa2_base": 0.0,
"repellendus-laborum_logiqa_base": 0.0,
"repellendus-laborum_lsat-ar_base": 0.0,
"repellendus-laborum_lsat-lr_base": 0.0,
"repellendus-laborum_lsat-rc_base": 0.0
},
"n-shot": {
"aspernatur-sint_logiqa2_base": 0,
"aspernatur-sint_logiqa_base": 0,
"aspernatur-sint_lsat-ar_base": 0,
"aspernatur-sint_lsat-lr_base": 0,
"aspernatur-sint_lsat-rc_base": 0,
"distinctio-unde_logiqa2_base": 0,
"distinctio-unde_logiqa_base": 0,
"distinctio-unde_lsat-ar_base": 0,
"distinctio-unde_lsat-lr_base": 0,
"distinctio-unde_lsat-rc_base": 0,
"eveniet-ea_logiqa2_base": 0,
"eveniet-ea_logiqa_base": 0,
"eveniet-ea_lsat-ar_base": 0,
"eveniet-ea_lsat-lr_base": 0,
"eveniet-ea_lsat-rc_base": 0,
"maxime-expedita_logiqa2_base": 0,
"maxime-expedita_logiqa_base": 0,
"maxime-expedita_lsat-ar_base": 0,
"maxime-expedita_lsat-lr_base": 0,
"maxime-expedita_lsat-rc_base": 0,
"possimus-voluptate_logiqa2_base": 0,
"possimus-voluptate_logiqa_base": 0,
"possimus-voluptate_lsat-ar_base": 0,
"possimus-voluptate_lsat-lr_base": 0,
"possimus-voluptate_lsat-rc_base": 0,
"repellendus-laborum_logiqa2_base": 0,
"repellendus-laborum_logiqa_base": 0,
"repellendus-laborum_lsat-ar_base": 0,
"repellendus-laborum_lsat-lr_base": 0,
"repellendus-laborum_lsat-rc_base": 0
},
"config": {
"model": "vllm",
"model_args": "pretrained=microsoft/phi-2,revision=main,dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.9,trust_remote_code=true,max_length=2048",
"batch_size": "auto",
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null
},
"git_hash": "3d5b980"
}