|
{ |
|
"results": { |
|
"repellendus-laborum_lsat-rc_base": { |
|
"acc,none": 0.26765799256505574, |
|
"acc_stderr,none": 0.0270445453145873, |
|
"alias": "repellendus-laborum_lsat-rc_base" |
|
}, |
|
"repellendus-laborum_lsat-lr_base": { |
|
"acc,none": 0.23137254901960785, |
|
"acc_stderr,none": 0.018691965462419517, |
|
"alias": "repellendus-laborum_lsat-lr_base" |
|
}, |
|
"repellendus-laborum_lsat-ar_base": { |
|
"acc,none": 0.25217391304347825, |
|
"acc_stderr,none": 0.028696745294493366, |
|
"alias": "repellendus-laborum_lsat-ar_base" |
|
}, |
|
"repellendus-laborum_logiqa_base": { |
|
"acc,none": 0.29073482428115016, |
|
"acc_stderr,none": 0.0181640562091778, |
|
"alias": "repellendus-laborum_logiqa_base" |
|
}, |
|
"repellendus-laborum_logiqa2_base": { |
|
"acc,none": 0.29389312977099236, |
|
"acc_stderr,none": 0.011493223255677107, |
|
"alias": "repellendus-laborum_logiqa2_base" |
|
}, |
|
"possimus-voluptate_lsat-rc_base": { |
|
"acc,none": 0.2527881040892193, |
|
"acc_stderr,none": 0.026548061072649957, |
|
"alias": "possimus-voluptate_lsat-rc_base" |
|
}, |
|
"possimus-voluptate_lsat-lr_base": { |
|
"acc,none": 0.22941176470588234, |
|
"acc_stderr,none": 0.01863631913244453, |
|
"alias": "possimus-voluptate_lsat-lr_base" |
|
}, |
|
"possimus-voluptate_lsat-ar_base": { |
|
"acc,none": 0.21739130434782608, |
|
"acc_stderr,none": 0.02725685083881996, |
|
"alias": "possimus-voluptate_lsat-ar_base" |
|
}, |
|
"possimus-voluptate_logiqa_base": { |
|
"acc,none": 0.2795527156549521, |
|
"acc_stderr,none": 0.017951178003680606, |
|
"alias": "possimus-voluptate_logiqa_base" |
|
}, |
|
"possimus-voluptate_logiqa2_base": { |
|
"acc,none": 0.2926208651399491, |
|
"acc_stderr,none": 0.01147864633663911, |
|
"alias": "possimus-voluptate_logiqa2_base" |
|
}, |
|
"maxime-expedita_lsat-rc_base": { |
|
"acc,none": 0.2527881040892193, |
|
"acc_stderr,none": 0.026548061072649953, |
|
"alias": "maxime-expedita_lsat-rc_base" |
|
}, |
|
"maxime-expedita_lsat-lr_base": { |
|
"acc,none": 0.24705882352941178, |
|
"acc_stderr,none": 0.019117091440867724, |
|
"alias": "maxime-expedita_lsat-lr_base" |
|
}, |
|
"maxime-expedita_lsat-ar_base": { |
|
"acc,none": 0.23478260869565218, |
|
"acc_stderr,none": 0.028009647070930132, |
|
"alias": "maxime-expedita_lsat-ar_base" |
|
}, |
|
"maxime-expedita_logiqa_base": { |
|
"acc,none": 0.2971246006389776, |
|
"acc_stderr,none": 0.018279674935144995, |
|
"alias": "maxime-expedita_logiqa_base" |
|
}, |
|
"maxime-expedita_logiqa2_base": { |
|
"acc,none": 0.27099236641221375, |
|
"acc_stderr,none": 0.011213894711527516, |
|
"alias": "maxime-expedita_logiqa2_base" |
|
}, |
|
"eveniet-ea_lsat-rc_base": { |
|
"acc,none": 0.2899628252788104, |
|
"acc_stderr,none": 0.027716877855226897, |
|
"alias": "eveniet-ea_lsat-rc_base" |
|
}, |
|
"eveniet-ea_lsat-lr_base": { |
|
"acc,none": 0.23333333333333334, |
|
"acc_stderr,none": 0.01874704371659074, |
|
"alias": "eveniet-ea_lsat-lr_base" |
|
}, |
|
"eveniet-ea_lsat-ar_base": { |
|
"acc,none": 0.2217391304347826, |
|
"acc_stderr,none": 0.02745149660405891, |
|
"alias": "eveniet-ea_lsat-ar_base" |
|
}, |
|
"eveniet-ea_logiqa_base": { |
|
"acc,none": 0.2955271565495208, |
|
"acc_stderr,none": 0.018251174484565112, |
|
"alias": "eveniet-ea_logiqa_base" |
|
}, |
|
"eveniet-ea_logiqa2_base": { |
|
"acc,none": 0.2837150127226463, |
|
"acc_stderr,none": 0.011373548669758796, |
|
"alias": "eveniet-ea_logiqa2_base" |
|
}, |
|
"distinctio-unde_lsat-rc_base": { |
|
"acc,none": 0.26394052044609667, |
|
"acc_stderr,none": 0.026924155643902548, |
|
"alias": "distinctio-unde_lsat-rc_base" |
|
}, |
|
"distinctio-unde_lsat-lr_base": { |
|
"acc,none": 0.2647058823529412, |
|
"acc_stderr,none": 0.019554803257850088, |
|
"alias": "distinctio-unde_lsat-lr_base" |
|
}, |
|
"distinctio-unde_lsat-ar_base": { |
|
"acc,none": 0.24347826086956523, |
|
"acc_stderr,none": 0.028361099300075063, |
|
"alias": "distinctio-unde_lsat-ar_base" |
|
}, |
|
"distinctio-unde_logiqa_base": { |
|
"acc,none": 0.3003194888178914, |
|
"acc_stderr,none": 0.01833587493212361, |
|
"alias": "distinctio-unde_logiqa_base" |
|
}, |
|
"distinctio-unde_logiqa2_base": { |
|
"acc,none": 0.2970737913486005, |
|
"acc_stderr,none": 0.011529193947365896, |
|
"alias": "distinctio-unde_logiqa2_base" |
|
}, |
|
"aspernatur-sint_lsat-rc_base": { |
|
"acc,none": 0.26765799256505574, |
|
"acc_stderr,none": 0.027044545314587293, |
|
"alias": "aspernatur-sint_lsat-rc_base" |
|
}, |
|
"aspernatur-sint_lsat-lr_base": { |
|
"acc,none": 0.27058823529411763, |
|
"acc_stderr,none": 0.0196916426487322, |
|
"alias": "aspernatur-sint_lsat-lr_base" |
|
}, |
|
"aspernatur-sint_lsat-ar_base": { |
|
"acc,none": 0.2217391304347826, |
|
"acc_stderr,none": 0.027451496604058913, |
|
"alias": "aspernatur-sint_lsat-ar_base" |
|
}, |
|
"aspernatur-sint_logiqa_base": { |
|
"acc,none": 0.2955271565495208, |
|
"acc_stderr,none": 0.018251174484565112, |
|
"alias": "aspernatur-sint_logiqa_base" |
|
}, |
|
"aspernatur-sint_logiqa2_base": { |
|
"acc,none": 0.2868956743002545, |
|
"acc_stderr,none": 0.01141170254782954, |
|
"alias": "aspernatur-sint_logiqa2_base" |
|
} |
|
}, |
|
"configs": { |
|
"aspernatur-sint_logiqa2_base": { |
|
"task": "aspernatur-sint_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "aspernatur-sint-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"aspernatur-sint_logiqa_base": { |
|
"task": "aspernatur-sint_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "aspernatur-sint-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"aspernatur-sint_lsat-ar_base": { |
|
"task": "aspernatur-sint_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "aspernatur-sint-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"aspernatur-sint_lsat-lr_base": { |
|
"task": "aspernatur-sint_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "aspernatur-sint-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"aspernatur-sint_lsat-rc_base": { |
|
"task": "aspernatur-sint_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "aspernatur-sint-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"distinctio-unde_logiqa2_base": { |
|
"task": "distinctio-unde_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "distinctio-unde-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"distinctio-unde_logiqa_base": { |
|
"task": "distinctio-unde_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "distinctio-unde-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"distinctio-unde_lsat-ar_base": { |
|
"task": "distinctio-unde_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "distinctio-unde-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"distinctio-unde_lsat-lr_base": { |
|
"task": "distinctio-unde_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "distinctio-unde-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"distinctio-unde_lsat-rc_base": { |
|
"task": "distinctio-unde_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "distinctio-unde-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"eveniet-ea_logiqa2_base": { |
|
"task": "eveniet-ea_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "eveniet-ea-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"eveniet-ea_logiqa_base": { |
|
"task": "eveniet-ea_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "eveniet-ea-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"eveniet-ea_lsat-ar_base": { |
|
"task": "eveniet-ea_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "eveniet-ea-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"eveniet-ea_lsat-lr_base": { |
|
"task": "eveniet-ea_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "eveniet-ea-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"eveniet-ea_lsat-rc_base": { |
|
"task": "eveniet-ea_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "eveniet-ea-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"maxime-expedita_logiqa2_base": { |
|
"task": "maxime-expedita_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "maxime-expedita-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"maxime-expedita_logiqa_base": { |
|
"task": "maxime-expedita_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "maxime-expedita-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"maxime-expedita_lsat-ar_base": { |
|
"task": "maxime-expedita_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "maxime-expedita-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"maxime-expedita_lsat-lr_base": { |
|
"task": "maxime-expedita_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "maxime-expedita-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"maxime-expedita_lsat-rc_base": { |
|
"task": "maxime-expedita_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "maxime-expedita-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"possimus-voluptate_logiqa2_base": { |
|
"task": "possimus-voluptate_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "possimus-voluptate-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"possimus-voluptate_logiqa_base": { |
|
"task": "possimus-voluptate_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "possimus-voluptate-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"possimus-voluptate_lsat-ar_base": { |
|
"task": "possimus-voluptate_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "possimus-voluptate-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"possimus-voluptate_lsat-lr_base": { |
|
"task": "possimus-voluptate_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "possimus-voluptate-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"possimus-voluptate_lsat-rc_base": { |
|
"task": "possimus-voluptate_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "possimus-voluptate-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"repellendus-laborum_logiqa2_base": { |
|
"task": "repellendus-laborum_logiqa2_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "repellendus-laborum-logiqa2/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"repellendus-laborum_logiqa_base": { |
|
"task": "repellendus-laborum_logiqa_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "repellendus-laborum-logiqa/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"repellendus-laborum_lsat-ar_base": { |
|
"task": "repellendus-laborum_lsat-ar_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "repellendus-laborum-lsat-ar/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"repellendus-laborum_lsat-lr_base": { |
|
"task": "repellendus-laborum_lsat-lr_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "repellendus-laborum-lsat-lr/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
}, |
|
"repellendus-laborum_lsat-rc_base": { |
|
"task": "repellendus-laborum_lsat-rc_base", |
|
"group": "logikon-bench", |
|
"dataset_path": "logikon/cot-eval-traces", |
|
"dataset_kwargs": { |
|
"data_files": { |
|
"test": "repellendus-laborum-lsat-rc/test-00000-of-00001.parquet" |
|
} |
|
}, |
|
"test_split": "test", |
|
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n", |
|
"doc_to_target": "{{answer}}", |
|
"doc_to_choice": "{{options}}", |
|
"description": "", |
|
"target_delimiter": " ", |
|
"fewshot_delimiter": "\n\n", |
|
"num_fewshot": 0, |
|
"metric_list": [ |
|
{ |
|
"metric": "acc", |
|
"aggregation": "mean", |
|
"higher_is_better": true |
|
} |
|
], |
|
"output_type": "multiple_choice", |
|
"repeats": 1, |
|
"should_decontaminate": false, |
|
"metadata": { |
|
"version": 0.0 |
|
} |
|
} |
|
}, |
|
"versions": { |
|
"aspernatur-sint_logiqa2_base": 0.0, |
|
"aspernatur-sint_logiqa_base": 0.0, |
|
"aspernatur-sint_lsat-ar_base": 0.0, |
|
"aspernatur-sint_lsat-lr_base": 0.0, |
|
"aspernatur-sint_lsat-rc_base": 0.0, |
|
"distinctio-unde_logiqa2_base": 0.0, |
|
"distinctio-unde_logiqa_base": 0.0, |
|
"distinctio-unde_lsat-ar_base": 0.0, |
|
"distinctio-unde_lsat-lr_base": 0.0, |
|
"distinctio-unde_lsat-rc_base": 0.0, |
|
"eveniet-ea_logiqa2_base": 0.0, |
|
"eveniet-ea_logiqa_base": 0.0, |
|
"eveniet-ea_lsat-ar_base": 0.0, |
|
"eveniet-ea_lsat-lr_base": 0.0, |
|
"eveniet-ea_lsat-rc_base": 0.0, |
|
"maxime-expedita_logiqa2_base": 0.0, |
|
"maxime-expedita_logiqa_base": 0.0, |
|
"maxime-expedita_lsat-ar_base": 0.0, |
|
"maxime-expedita_lsat-lr_base": 0.0, |
|
"maxime-expedita_lsat-rc_base": 0.0, |
|
"possimus-voluptate_logiqa2_base": 0.0, |
|
"possimus-voluptate_logiqa_base": 0.0, |
|
"possimus-voluptate_lsat-ar_base": 0.0, |
|
"possimus-voluptate_lsat-lr_base": 0.0, |
|
"possimus-voluptate_lsat-rc_base": 0.0, |
|
"repellendus-laborum_logiqa2_base": 0.0, |
|
"repellendus-laborum_logiqa_base": 0.0, |
|
"repellendus-laborum_lsat-ar_base": 0.0, |
|
"repellendus-laborum_lsat-lr_base": 0.0, |
|
"repellendus-laborum_lsat-rc_base": 0.0 |
|
}, |
|
"n-shot": { |
|
"aspernatur-sint_logiqa2_base": 0, |
|
"aspernatur-sint_logiqa_base": 0, |
|
"aspernatur-sint_lsat-ar_base": 0, |
|
"aspernatur-sint_lsat-lr_base": 0, |
|
"aspernatur-sint_lsat-rc_base": 0, |
|
"distinctio-unde_logiqa2_base": 0, |
|
"distinctio-unde_logiqa_base": 0, |
|
"distinctio-unde_lsat-ar_base": 0, |
|
"distinctio-unde_lsat-lr_base": 0, |
|
"distinctio-unde_lsat-rc_base": 0, |
|
"eveniet-ea_logiqa2_base": 0, |
|
"eveniet-ea_logiqa_base": 0, |
|
"eveniet-ea_lsat-ar_base": 0, |
|
"eveniet-ea_lsat-lr_base": 0, |
|
"eveniet-ea_lsat-rc_base": 0, |
|
"maxime-expedita_logiqa2_base": 0, |
|
"maxime-expedita_logiqa_base": 0, |
|
"maxime-expedita_lsat-ar_base": 0, |
|
"maxime-expedita_lsat-lr_base": 0, |
|
"maxime-expedita_lsat-rc_base": 0, |
|
"possimus-voluptate_logiqa2_base": 0, |
|
"possimus-voluptate_logiqa_base": 0, |
|
"possimus-voluptate_lsat-ar_base": 0, |
|
"possimus-voluptate_lsat-lr_base": 0, |
|
"possimus-voluptate_lsat-rc_base": 0, |
|
"repellendus-laborum_logiqa2_base": 0, |
|
"repellendus-laborum_logiqa_base": 0, |
|
"repellendus-laborum_lsat-ar_base": 0, |
|
"repellendus-laborum_lsat-lr_base": 0, |
|
"repellendus-laborum_lsat-rc_base": 0 |
|
}, |
|
"config": { |
|
"model": "vllm", |
|
"model_args": "pretrained=microsoft/phi-2,revision=main,dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.9,trust_remote_code=true,max_length=2048", |
|
"batch_size": "auto", |
|
"batch_sizes": [], |
|
"device": null, |
|
"use_cache": null, |
|
"limit": null, |
|
"bootstrap_iters": 100000, |
|
"gen_kwargs": null |
|
}, |
|
"git_hash": "3d5b980" |
|
} |