ggbetz's picture
Upload results for model mistralai/Mistral-7B-v0.1 (#2)
2829e0a verified
raw
history blame
56.2 kB
{
"results": {
"unde-laudantium_lsat-rc_base": {
"acc,none": 0.30111524163568776,
"acc_stderr,none": 0.028022169587612226,
"alias": "unde-laudantium_lsat-rc_base"
},
"unde-laudantium_lsat-lr_base": {
"acc,none": 0.23529411764705882,
"acc_stderr,none": 0.018801558887410304,
"alias": "unde-laudantium_lsat-lr_base"
},
"unde-laudantium_lsat-ar_base": {
"acc,none": 0.20869565217391303,
"acc_stderr,none": 0.026854108265439675,
"alias": "unde-laudantium_lsat-ar_base"
},
"unde-laudantium_logiqa_base": {
"acc,none": 0.26996805111821087,
"acc_stderr,none": 0.017757716181700637,
"alias": "unde-laudantium_logiqa_base"
},
"unde-laudantium_logiqa2_base": {
"acc,none": 0.3256997455470738,
"acc_stderr,none": 0.011823533300939599,
"alias": "unde-laudantium_logiqa2_base"
},
"temporibus-illo_lsat-rc_base": {
"acc,none": 0.26394052044609667,
"acc_stderr,none": 0.02692415564390256,
"alias": "temporibus-illo_lsat-rc_base"
},
"temporibus-illo_lsat-lr_base": {
"acc,none": 0.21568627450980393,
"acc_stderr,none": 0.018230445049830818,
"alias": "temporibus-illo_lsat-lr_base"
},
"temporibus-illo_lsat-ar_base": {
"acc,none": 0.1826086956521739,
"acc_stderr,none": 0.025530421952734174,
"alias": "temporibus-illo_lsat-ar_base"
},
"temporibus-illo_logiqa_base": {
"acc,none": 0.26996805111821087,
"acc_stderr,none": 0.017757716181700637,
"alias": "temporibus-illo_logiqa_base"
},
"temporibus-illo_logiqa2_base": {
"acc,none": 0.3187022900763359,
"acc_stderr,none": 0.011756362373408389,
"alias": "temporibus-illo_logiqa2_base"
},
"quo-non_lsat-rc_base": {
"acc,none": 0.24907063197026022,
"acc_stderr,none": 0.02641760298057974,
"alias": "quo-non_lsat-rc_base"
},
"quo-non_lsat-lr_base": {
"acc,none": 0.2411764705882353,
"acc_stderr,none": 0.018961774215004727,
"alias": "quo-non_lsat-lr_base"
},
"quo-non_lsat-ar_base": {
"acc,none": 0.20434782608695654,
"acc_stderr,none": 0.026645808150011344,
"alias": "quo-non_lsat-ar_base"
},
"quo-non_logiqa_base": {
"acc,none": 0.25878594249201275,
"acc_stderr,none": 0.01751871129783383,
"alias": "quo-non_logiqa_base"
},
"quo-non_logiqa2_base": {
"acc,none": 0.30279898218829515,
"acc_stderr,none": 0.011592260158888737,
"alias": "quo-non_logiqa2_base"
},
"magni-excepturi_lsat-rc_base": {
"acc,none": 0.26022304832713755,
"acc_stderr,none": 0.02680130130545777,
"alias": "magni-excepturi_lsat-rc_base"
},
"magni-excepturi_lsat-lr_base": {
"acc,none": 0.22745098039215686,
"acc_stderr,none": 0.018580099622603333,
"alias": "magni-excepturi_lsat-lr_base"
},
"magni-excepturi_lsat-ar_base": {
"acc,none": 0.17391304347826086,
"acc_stderr,none": 0.02504731738604972,
"alias": "magni-excepturi_lsat-ar_base"
},
"magni-excepturi_logiqa_base": {
"acc,none": 0.25878594249201275,
"acc_stderr,none": 0.01751871129783383,
"alias": "magni-excepturi_logiqa_base"
},
"magni-excepturi_logiqa2_base": {
"acc,none": 0.30725190839694655,
"acc_stderr,none": 0.011639836259579924,
"alias": "magni-excepturi_logiqa2_base"
},
"laboriosam-numquam_lsat-rc_base": {
"acc,none": 0.27137546468401486,
"acc_stderr,none": 0.027162503089239523,
"alias": "laboriosam-numquam_lsat-rc_base"
},
"laboriosam-numquam_lsat-lr_base": {
"acc,none": 0.21372549019607842,
"acc_stderr,none": 0.01817006027631824,
"alias": "laboriosam-numquam_lsat-lr_base"
},
"laboriosam-numquam_lsat-ar_base": {
"acc,none": 0.21304347826086956,
"acc_stderr,none": 0.027057754389936177,
"alias": "laboriosam-numquam_lsat-ar_base"
},
"laboriosam-numquam_logiqa_base": {
"acc,none": 0.25559105431309903,
"acc_stderr,none": 0.01744771697469749,
"alias": "laboriosam-numquam_logiqa_base"
},
"laboriosam-numquam_logiqa2_base": {
"acc,none": 0.30725190839694655,
"acc_stderr,none": 0.011639836259579922,
"alias": "laboriosam-numquam_logiqa2_base"
},
"dolore-possimus_lsat-rc_base": {
"acc,none": 0.2862453531598513,
"acc_stderr,none": 0.027610628966374826,
"alias": "dolore-possimus_lsat-rc_base"
},
"dolore-possimus_lsat-lr_base": {
"acc,none": 0.2196078431372549,
"acc_stderr,none": 0.01834938361142324,
"alias": "dolore-possimus_lsat-lr_base"
},
"dolore-possimus_lsat-ar_base": {
"acc,none": 0.2217391304347826,
"acc_stderr,none": 0.027451496604058916,
"alias": "dolore-possimus_lsat-ar_base"
},
"dolore-possimus_logiqa_base": {
"acc,none": 0.2763578274760383,
"acc_stderr,none": 0.01788783625456192,
"alias": "dolore-possimus_logiqa_base"
},
"dolore-possimus_logiqa2_base": {
"acc,none": 0.2989821882951654,
"acc_stderr,none": 0.011550454987784068,
"alias": "dolore-possimus_logiqa2_base"
}
},
"configs": {
"dolore-possimus_logiqa2_base": {
"task": "dolore-possimus_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "dolore-possimus-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"dolore-possimus_logiqa_base": {
"task": "dolore-possimus_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "dolore-possimus-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"dolore-possimus_lsat-ar_base": {
"task": "dolore-possimus_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "dolore-possimus-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"dolore-possimus_lsat-lr_base": {
"task": "dolore-possimus_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "dolore-possimus-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"dolore-possimus_lsat-rc_base": {
"task": "dolore-possimus_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "dolore-possimus-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"laboriosam-numquam_logiqa2_base": {
"task": "laboriosam-numquam_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "laboriosam-numquam-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"laboriosam-numquam_logiqa_base": {
"task": "laboriosam-numquam_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "laboriosam-numquam-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"laboriosam-numquam_lsat-ar_base": {
"task": "laboriosam-numquam_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "laboriosam-numquam-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"laboriosam-numquam_lsat-lr_base": {
"task": "laboriosam-numquam_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "laboriosam-numquam-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"laboriosam-numquam_lsat-rc_base": {
"task": "laboriosam-numquam_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "laboriosam-numquam-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"magni-excepturi_logiqa2_base": {
"task": "magni-excepturi_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "magni-excepturi-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"magni-excepturi_logiqa_base": {
"task": "magni-excepturi_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "magni-excepturi-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"magni-excepturi_lsat-ar_base": {
"task": "magni-excepturi_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "magni-excepturi-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"magni-excepturi_lsat-lr_base": {
"task": "magni-excepturi_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "magni-excepturi-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"magni-excepturi_lsat-rc_base": {
"task": "magni-excepturi_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "magni-excepturi-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"quo-non_logiqa2_base": {
"task": "quo-non_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "quo-non-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"quo-non_logiqa_base": {
"task": "quo-non_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "quo-non-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"quo-non_lsat-ar_base": {
"task": "quo-non_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "quo-non-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"quo-non_lsat-lr_base": {
"task": "quo-non_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "quo-non-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"quo-non_lsat-rc_base": {
"task": "quo-non_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "quo-non-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"temporibus-illo_logiqa2_base": {
"task": "temporibus-illo_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "temporibus-illo-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"temporibus-illo_logiqa_base": {
"task": "temporibus-illo_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "temporibus-illo-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"temporibus-illo_lsat-ar_base": {
"task": "temporibus-illo_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "temporibus-illo-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"temporibus-illo_lsat-lr_base": {
"task": "temporibus-illo_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "temporibus-illo-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"temporibus-illo_lsat-rc_base": {
"task": "temporibus-illo_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "temporibus-illo-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"unde-laudantium_logiqa2_base": {
"task": "unde-laudantium_logiqa2_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "unde-laudantium-logiqa2/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"unde-laudantium_logiqa_base": {
"task": "unde-laudantium_logiqa_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "unde-laudantium-logiqa/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"unde-laudantium_lsat-ar_base": {
"task": "unde-laudantium_lsat-ar_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "unde-laudantium-lsat-ar/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"unde-laudantium_lsat-lr_base": {
"task": "unde-laudantium_lsat-lr_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "unde-laudantium-lsat-lr/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
},
"unde-laudantium_lsat-rc_base": {
"task": "unde-laudantium_lsat-rc_base",
"group": "logikon-bench",
"dataset_path": "logikon/cot-eval-traces",
"dataset_kwargs": {
"data_files": {
"test": "unde-laudantium-lsat-rc/test-00000-of-00001.parquet"
}
},
"test_split": "test",
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Answer the following question about the given passage.\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Answer:\"\n return prompt\n",
"doc_to_target": "{{answer}}",
"doc_to_choice": "{{options}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 0.0
}
}
},
"versions": {
"dolore-possimus_logiqa2_base": 0.0,
"dolore-possimus_logiqa_base": 0.0,
"dolore-possimus_lsat-ar_base": 0.0,
"dolore-possimus_lsat-lr_base": 0.0,
"dolore-possimus_lsat-rc_base": 0.0,
"laboriosam-numquam_logiqa2_base": 0.0,
"laboriosam-numquam_logiqa_base": 0.0,
"laboriosam-numquam_lsat-ar_base": 0.0,
"laboriosam-numquam_lsat-lr_base": 0.0,
"laboriosam-numquam_lsat-rc_base": 0.0,
"magni-excepturi_logiqa2_base": 0.0,
"magni-excepturi_logiqa_base": 0.0,
"magni-excepturi_lsat-ar_base": 0.0,
"magni-excepturi_lsat-lr_base": 0.0,
"magni-excepturi_lsat-rc_base": 0.0,
"quo-non_logiqa2_base": 0.0,
"quo-non_logiqa_base": 0.0,
"quo-non_lsat-ar_base": 0.0,
"quo-non_lsat-lr_base": 0.0,
"quo-non_lsat-rc_base": 0.0,
"temporibus-illo_logiqa2_base": 0.0,
"temporibus-illo_logiqa_base": 0.0,
"temporibus-illo_lsat-ar_base": 0.0,
"temporibus-illo_lsat-lr_base": 0.0,
"temporibus-illo_lsat-rc_base": 0.0,
"unde-laudantium_logiqa2_base": 0.0,
"unde-laudantium_logiqa_base": 0.0,
"unde-laudantium_lsat-ar_base": 0.0,
"unde-laudantium_lsat-lr_base": 0.0,
"unde-laudantium_lsat-rc_base": 0.0
},
"n-shot": {
"dolore-possimus_logiqa2_base": 0,
"dolore-possimus_logiqa_base": 0,
"dolore-possimus_lsat-ar_base": 0,
"dolore-possimus_lsat-lr_base": 0,
"dolore-possimus_lsat-rc_base": 0,
"laboriosam-numquam_logiqa2_base": 0,
"laboriosam-numquam_logiqa_base": 0,
"laboriosam-numquam_lsat-ar_base": 0,
"laboriosam-numquam_lsat-lr_base": 0,
"laboriosam-numquam_lsat-rc_base": 0,
"magni-excepturi_logiqa2_base": 0,
"magni-excepturi_logiqa_base": 0,
"magni-excepturi_lsat-ar_base": 0,
"magni-excepturi_lsat-lr_base": 0,
"magni-excepturi_lsat-rc_base": 0,
"quo-non_logiqa2_base": 0,
"quo-non_logiqa_base": 0,
"quo-non_lsat-ar_base": 0,
"quo-non_lsat-lr_base": 0,
"quo-non_lsat-rc_base": 0,
"temporibus-illo_logiqa2_base": 0,
"temporibus-illo_logiqa_base": 0,
"temporibus-illo_lsat-ar_base": 0,
"temporibus-illo_lsat-lr_base": 0,
"temporibus-illo_lsat-rc_base": 0,
"unde-laudantium_logiqa2_base": 0,
"unde-laudantium_logiqa_base": 0,
"unde-laudantium_lsat-ar_base": 0,
"unde-laudantium_lsat-lr_base": 0,
"unde-laudantium_lsat-rc_base": 0
},
"config": {
"model": "vllm",
"model_args": "pretrained=mistralai/Mistral-7B-v0.1,revision=main,dtype=auto,tensor_parallel_size=1,gpu_memory_utilization=0.9,trust_remote_code=true,max_length=4096",
"batch_size": "auto",
"batch_sizes": [],
"device": null,
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null
},
"git_hash": "5044cf9"
}