cot-eval-results
/
data
/OpenBuddy
/openbuddy-mistral2-7b-v20.2-32k
/cot
/24-04-08-13:02:28_idx20.json
{ | |
"results": { | |
"libero-accusamus-6367_logiqa2_cot": { | |
"acc,none": 0.37595419847328243, | |
"acc_stderr,none": 0.012220461577760402, | |
"alias": "libero-accusamus-6367_logiqa2_cot" | |
}, | |
"libero-accusamus-6367_logiqa_cot": { | |
"acc,none": 0.329073482428115, | |
"acc_stderr,none": 0.018795068527281092, | |
"alias": "libero-accusamus-6367_logiqa_cot" | |
}, | |
"libero-accusamus-6367_lsat-ar_cot": { | |
"acc,none": 0.2391304347826087, | |
"acc_stderr,none": 0.028187385293933942, | |
"alias": "libero-accusamus-6367_lsat-ar_cot" | |
}, | |
"libero-accusamus-6367_lsat-lr_cot": { | |
"acc,none": 0.37450980392156863, | |
"acc_stderr,none": 0.02145274931607744, | |
"alias": "libero-accusamus-6367_lsat-lr_cot" | |
}, | |
"libero-accusamus-6367_lsat-rc_cot": { | |
"acc,none": 0.42379182156133827, | |
"acc_stderr,none": 0.030185515550116906, | |
"alias": "libero-accusamus-6367_lsat-rc_cot" | |
} | |
}, | |
"configs": { | |
"libero-accusamus-6367_logiqa2_cot": { | |
"task": "libero-accusamus-6367_logiqa2_cot", | |
"group": "logikon-bench", | |
"dataset_path": "cot-leaderboard/cot-eval-traces", | |
"dataset_kwargs": { | |
"data_files": { | |
"test": "libero-accusamus-6367-logiqa2/test-00000-of-00001.parquet" | |
} | |
}, | |
"test_split": "test", | |
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n", | |
"doc_to_target": "{{answer}}", | |
"doc_to_choice": "{{options}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"libero-accusamus-6367_logiqa_cot": { | |
"task": "libero-accusamus-6367_logiqa_cot", | |
"group": "logikon-bench", | |
"dataset_path": "cot-leaderboard/cot-eval-traces", | |
"dataset_kwargs": { | |
"data_files": { | |
"test": "libero-accusamus-6367-logiqa/test-00000-of-00001.parquet" | |
} | |
}, | |
"test_split": "test", | |
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n", | |
"doc_to_target": "{{answer}}", | |
"doc_to_choice": "{{options}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"libero-accusamus-6367_lsat-ar_cot": { | |
"task": "libero-accusamus-6367_lsat-ar_cot", | |
"group": "logikon-bench", | |
"dataset_path": "cot-leaderboard/cot-eval-traces", | |
"dataset_kwargs": { | |
"data_files": { | |
"test": "libero-accusamus-6367-lsat-ar/test-00000-of-00001.parquet" | |
} | |
}, | |
"test_split": "test", | |
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n", | |
"doc_to_target": "{{answer}}", | |
"doc_to_choice": "{{options}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"libero-accusamus-6367_lsat-lr_cot": { | |
"task": "libero-accusamus-6367_lsat-lr_cot", | |
"group": "logikon-bench", | |
"dataset_path": "cot-leaderboard/cot-eval-traces", | |
"dataset_kwargs": { | |
"data_files": { | |
"test": "libero-accusamus-6367-lsat-lr/test-00000-of-00001.parquet" | |
} | |
}, | |
"test_split": "test", | |
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n", | |
"doc_to_target": "{{answer}}", | |
"doc_to_choice": "{{options}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
}, | |
"libero-accusamus-6367_lsat-rc_cot": { | |
"task": "libero-accusamus-6367_lsat-rc_cot", | |
"group": "logikon-bench", | |
"dataset_path": "cot-leaderboard/cot-eval-traces", | |
"dataset_kwargs": { | |
"data_files": { | |
"test": "libero-accusamus-6367-lsat-rc/test-00000-of-00001.parquet" | |
} | |
}, | |
"test_split": "test", | |
"doc_to_text": "def doc_to_text_cot(doc) -> str:\n \"\"\"\n Answer the following question about the given passage. [Base your answer on the reasoning below.]\n \n Passage: <passage>\n \n Question: <question>\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n [E. <choice5>]\n \n [Reasoning: <reasoning>]\n \n Answer:\n \"\"\"\n k = len(doc[\"options\"])\n choices = [\"a\", \"b\", \"c\", \"d\", \"e\"][:k]\n prompt = \"Answer the following question about the given passage. Base your answer on the reasoning below.\\n\\n\"\n prompt = \"Passage: \" + doc[\"passage\"] + \"\\n\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"\\n\"\n prompt += \"Reasoning: \" + doc[\"reasoning_trace\"] + \"\\n\\n\" \n prompt += \"Answer:\"\n return prompt\n", | |
"doc_to_target": "{{answer}}", | |
"doc_to_choice": "{{options}}", | |
"description": "", | |
"target_delimiter": " ", | |
"fewshot_delimiter": "\n\n", | |
"num_fewshot": 0, | |
"metric_list": [ | |
{ | |
"metric": "acc", | |
"aggregation": "mean", | |
"higher_is_better": true | |
} | |
], | |
"output_type": "multiple_choice", | |
"repeats": 1, | |
"should_decontaminate": false, | |
"metadata": { | |
"version": 0.0 | |
} | |
} | |
}, | |
"versions": { | |
"libero-accusamus-6367_logiqa2_cot": 0.0, | |
"libero-accusamus-6367_logiqa_cot": 0.0, | |
"libero-accusamus-6367_lsat-ar_cot": 0.0, | |
"libero-accusamus-6367_lsat-lr_cot": 0.0, | |
"libero-accusamus-6367_lsat-rc_cot": 0.0 | |
}, | |
"n-shot": { | |
"libero-accusamus-6367_logiqa2_cot": 0, | |
"libero-accusamus-6367_logiqa_cot": 0, | |
"libero-accusamus-6367_lsat-ar_cot": 0, | |
"libero-accusamus-6367_lsat-lr_cot": 0, | |
"libero-accusamus-6367_lsat-rc_cot": 0 | |
}, | |
"config": { | |
"model": "vllm", | |
"model_args": "pretrained=OpenBuddy/openbuddy-mistral2-7b-v20.2-32k,revision=main,dtype=bfloat16,tensor_parallel_size=1,gpu_memory_utilization=0.8,trust_remote_code=true,max_length=2048", | |
"batch_size": "auto", | |
"batch_sizes": [], | |
"device": null, | |
"use_cache": null, | |
"limit": null, | |
"bootstrap_iters": 100000, | |
"gen_kwargs": null | |
}, | |
"git_hash": "741db1c" | |
} |