|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" The Color Dataset (CoDa) |
|
|
|
CoDa is a probing dataset to evaluate the representation of visual properties |
|
in language models. CoDa consists of color distributions for 521 common |
|
objects, which are split into 3 groups: Single, Multi, and Any. |
|
|
|
The default configuration of CoDa uses 10 CLIP-style templates (e.g. "A photo |
|
of a ___"), and 10 cloze-style templates (e.g. "Everyone knows most ___ are |
|
___." ) |
|
""" |
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@misc{paik2021world, |
|
title={The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color}, |
|
author={Cory Paik and Stéphane Aroca-Ouellette and Alessandro Roncone and Katharina Kann}, |
|
year={2021}, |
|
eprint={2110.08182}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
*The Color Dataset* (CoDa) is a probing dataset to evaluate the representation of visual properties in language models. CoDa consists of color distributions for 521 common objects, which are split into 3 groups: Single, Multi, and Any. |
|
""" |
|
|
|
_HOMEPAGE = 'https://github.com/nala-cub/coda' |
|
_LICENSE = 'Apache 2.0' |
|
|
|
_URL = 'https://huggingface.co/datasets/corypaik/coda/resolve/main/data' |
|
|
|
_URLs = { |
|
'default': { |
|
'train': f'{_URL}/default_train.jsonl', |
|
'validation': f'{_URL}/default_validation.jsonl', |
|
'test': f'{_URL}/default_test.jsonl', |
|
} |
|
} |
|
|
|
|
|
class Coda(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version('1.0.1') |
|
|
|
|
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
'class_id': |
|
datasets.Value('string'), |
|
'display_name': |
|
datasets.Value('string'), |
|
'ngram': |
|
datasets.Value('string'), |
|
'label': |
|
datasets.Sequence(datasets.Value('float')), |
|
'object_group': |
|
datasets.ClassLabel(names=('Single', 'Multi', 'Any')), |
|
'text': |
|
datasets.Value('string'), |
|
'template_group': |
|
datasets.ClassLabel(names=('clip-imagenet', 'text-masked')), |
|
'template_idx': |
|
datasets.Value('int32') |
|
}) |
|
return datasets.DatasetInfo(description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION) |
|
|
|
def _split_generators(self, dl_manager): |
|
""" Returns SplitGenerators.""" |
|
files = dl_manager.download_and_extract(_URLs[self.config.name]) |
|
return [ |
|
datasets.SplitGenerator(datasets.Split.TRAIN, |
|
gen_kwargs={'path': files['train']}), |
|
datasets.SplitGenerator(datasets.Split.VALIDATION, |
|
gen_kwargs={'path': files['validation']}), |
|
datasets.SplitGenerator(datasets.Split.TEST, |
|
gen_kwargs={'path': files['test']}), |
|
] |
|
|
|
def _generate_examples(self, path): |
|
with open(path, 'r') as f: |
|
for _id, line in enumerate(f.readlines()): |
|
yield _id, json.loads(line) |
|
|