|
"""A modification of the Winograd Schema Challenge to ensure answers are a single context word""" |
|
|
|
import os |
|
import re |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{McCann2018decaNLP, |
|
title={The Natural Language Decathlon: Multitask Learning as Question Answering}, |
|
author={Bryan McCann and Nitish Shirish Keskar and Caiming Xiong and Richard Socher}, |
|
journal={arXiv preprint arXiv:1806.08730}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Examples taken from the Winograd Schema Challenge modified to ensure that answers are a single word from the context. |
|
This modified Winograd Schema Challenge (MWSC) ensures that scores are neither inflated nor deflated by oddities in phrasing. |
|
""" |
|
|
|
_DATA_URL = "https://raw.githubusercontent.com/salesforce/decaNLP/1e9605f246b9e05199b28bde2a2093bc49feeeaa/local_data/schema.txt" |
|
|
|
|
|
|
|
class MWSC(datasets.GeneratorBasedBuilder): |
|
"""MWSC: modified Winograd Schema Challenge""" |
|
|
|
VERSION = datasets.Version("0.1.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"sentence": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"options": datasets.features.Sequence(datasets.Value("string")), |
|
"answer": datasets.Value("string"), |
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="http://decanlp.com", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
schemas_file = dl_manager.download_and_extract(_DATA_URL) |
|
|
|
if os.path.isdir(schemas_file): |
|
|
|
schemas_file = os.path.join(schemas_file, "schema.txt") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": schemas_file, "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": schemas_file, "split": "test"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": schemas_file, "split": "dev"}, |
|
), |
|
] |
|
|
|
def _get_both_schema(self, context): |
|
"""Split [option1/option2] into 2 sentences. |
|
From https://github.com/salesforce/decaNLP/blob/1e9605f246b9e05199b28bde2a2093bc49feeeaa/text/torchtext/datasets/generic.py#L815-L827""" |
|
pattern = r"\[.*\]" |
|
variations = [x[1:-1].split("/") for x in re.findall(pattern, context)] |
|
splits = re.split(pattern, context) |
|
results = [] |
|
for which_schema in range(2): |
|
vs = [v[which_schema] for v in variations] |
|
context = "" |
|
for idx in range(len(splits)): |
|
context += splits[idx] |
|
if idx < len(vs): |
|
context += vs[idx] |
|
results.append(context) |
|
return results |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
|
|
schemas = [] |
|
with open(filepath, encoding="utf-8") as schema_file: |
|
schema = [] |
|
for line in schema_file: |
|
if len(line.split()) == 0: |
|
schemas.append(schema) |
|
schema = [] |
|
continue |
|
else: |
|
schema.append(line.strip()) |
|
|
|
|
|
splits = {} |
|
traindev = schemas[:-50] |
|
splits["test"] = schemas[-50:] |
|
splits["train"] = traindev[:40] |
|
splits["dev"] = traindev[40:] |
|
|
|
idx = 0 |
|
for schema in splits[split]: |
|
sentence, question, answers = schema |
|
sentence = self._get_both_schema(sentence) |
|
question = self._get_both_schema(question) |
|
answers = answers.split("/") |
|
for i in range(2): |
|
yield idx, {"sentence": sentence[i], "question": question[i], "options": answers, "answer": answers[i]} |
|
idx += 1 |
|
|