Snap
Browse files- vps_clustering_benchmark.py +0 -97
vps_clustering_benchmark.py
DELETED
@@ -1,97 +0,0 @@
|
|
1 |
-
import datasets
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
logger = datasets.logging.get_logger(__name__)
|
6 |
-
|
7 |
-
_DATA_PATH = "https://huggingface.co/datasets/conversy/vps_clustering_benchmark/resolve/main/dataset.pkl"
|
8 |
-
|
9 |
-
class VPClusteringBenchmarkConfig(datasets.BuilderConfig):
|
10 |
-
"""BuilderConfig for Conversy Benchmark."""
|
11 |
-
|
12 |
-
def __init__(self, name, version, **kwargs):
|
13 |
-
"""BuilderConfig for Conversy Benchmark.
|
14 |
-
Args:
|
15 |
-
**kwargs: keyword arguments forwarded to super.
|
16 |
-
"""
|
17 |
-
self.name = name
|
18 |
-
self.version = version
|
19 |
-
self.features = kwargs.pop("features", None)
|
20 |
-
self.description = kwargs.pop("description", None)
|
21 |
-
self.data_url = kwargs.pop("data_url", None)
|
22 |
-
self.nb_data_shards = kwargs.pop("nb_data_shards", None)
|
23 |
-
|
24 |
-
super(VPClusteringBenchmarkConfig, self).__init__(
|
25 |
-
name=name,
|
26 |
-
version=version,
|
27 |
-
**kwargs
|
28 |
-
)
|
29 |
-
|
30 |
-
|
31 |
-
class VPClusteringBenchmark(datasets.GeneratorBasedBuilder):
|
32 |
-
"""Conversy benchmark"""
|
33 |
-
VERSION = datasets.Version("1.0.0")
|
34 |
-
BUILDER_CONFIGS = [
|
35 |
-
VPClusteringBenchmarkConfig(
|
36 |
-
name="VPClusteringBenchmark",
|
37 |
-
version=VERSION,
|
38 |
-
description="Conversy Benchmark for ML models evaluation",
|
39 |
-
features=["segment_id", "filename", "speaker", "duration", "vp",
|
40 |
-
"start", "end", "readable_start", "readable_end",
|
41 |
-
"segment_clean"],
|
42 |
-
data_url=_DATA_PATH,
|
43 |
-
nb_data_shards=1)
|
44 |
-
]
|
45 |
-
|
46 |
-
def _info(self):
|
47 |
-
description = (
|
48 |
-
"Voice Print Clustering Benchmark"
|
49 |
-
)
|
50 |
-
features = datasets.Features(
|
51 |
-
{
|
52 |
-
"segment_id": datasets.Value("int32"),
|
53 |
-
"filename": datasets.Value("string"),
|
54 |
-
"speaker": datasets.Value("string"),
|
55 |
-
"duration": datasets.Value("float32"),
|
56 |
-
"segment_clean": datasets.Value("bool"),
|
57 |
-
"start": datasets.Value("float32"),
|
58 |
-
"end": datasets.Value("float32"),
|
59 |
-
"readable_start": datasets.Value("string"),
|
60 |
-
"readable_end": datasets.Value("string"),
|
61 |
-
"vp": datasets.Sequence(datasets.Value("float32"))
|
62 |
-
})
|
63 |
-
return datasets.DatasetInfo(
|
64 |
-
description=description,
|
65 |
-
features=features,
|
66 |
-
supervised_keys=None,
|
67 |
-
version=self.config.version
|
68 |
-
)
|
69 |
-
|
70 |
-
def _split_generators(self, dl_manager):
|
71 |
-
"""Returns SplitGenerators."""
|
72 |
-
data_url = self.config.data_url
|
73 |
-
downloaded_file = dl_manager.download_and_extract(data_url)
|
74 |
-
return [
|
75 |
-
datasets.SplitGenerator(
|
76 |
-
name=datasets.Split.TRAIN,
|
77 |
-
gen_kwargs={"file_path": downloaded_file},
|
78 |
-
),
|
79 |
-
]
|
80 |
-
|
81 |
-
def _generate_examples(self, file_path):
|
82 |
-
"""Yields examples."""
|
83 |
-
df = pd.read_pickle(file_path)
|
84 |
-
|
85 |
-
for idx, row in df.iterrows():
|
86 |
-
yield idx, {
|
87 |
-
"segment_id": row["segment_id"],
|
88 |
-
"filename": row["filename"],
|
89 |
-
"speaker": row["speaker"],
|
90 |
-
"duration": row["duration"],
|
91 |
-
"segment_clean": row["segment_clean"],
|
92 |
-
"start": row['start'],
|
93 |
-
"end": row['end'],
|
94 |
-
"readable_start": row['readable_start'],
|
95 |
-
"readable_end": row['readable_end'],
|
96 |
-
"vp": np.asarray(row["vp"], dtype=np.float32)
|
97 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|