|
import numpy as np |
|
import abc |
|
|
|
|
|
class AbstractReplayBuffer(abc.ABC): |
|
@abc.abstractmethod |
|
def add(self, time_step): |
|
pass |
|
|
|
@abc.abstractmethod |
|
def __next__(self, ): |
|
pass |
|
|
|
@abc.abstractmethod |
|
def __len__(self, ): |
|
pass |
|
|
|
|
|
class EfficientReplayBuffer(AbstractReplayBuffer): |
|
'''Fast + efficient replay buffer implementation in numpy.''' |
|
|
|
def __init__(self, buffer_size, batch_size, nstep, discount, frame_stack, |
|
data_specs=None, sarsa=False): |
|
self.buffer_size = buffer_size |
|
self.data_dict = {} |
|
self.index = -1 |
|
self.traj_index = 0 |
|
self.frame_stack = frame_stack |
|
self._recorded_frames = frame_stack + 1 |
|
self.batch_size = batch_size |
|
self.nstep = nstep |
|
self.discount = discount |
|
self.full = False |
|
self.discount_vec = np.power(discount, np.arange(nstep)) |
|
self.next_dis = discount ** nstep |
|
self.sarsa = sarsa |
|
|
|
def _initial_setup(self, time_step): |
|
self.index = 0 |
|
self.obs_shape = list(time_step.observation.shape) |
|
self.ims_channels = self.obs_shape[0] // self.frame_stack |
|
self.act_shape = time_step.action.shape |
|
|
|
self.obs = np.zeros([self.buffer_size, self.ims_channels, *self.obs_shape[1:]], dtype=np.uint8) |
|
self.act = np.zeros([self.buffer_size, *self.act_shape], dtype=np.float32) |
|
self.rew = np.zeros([self.buffer_size], dtype=np.float32) |
|
self.dis = np.zeros([self.buffer_size], dtype=np.float32) |
|
self.valid = np.zeros([self.buffer_size], dtype=np.bool_) |
|
|
|
def add_data_point(self, time_step): |
|
first = time_step.first() |
|
latest_obs = time_step.observation[-self.ims_channels:] |
|
if first: |
|
end_index = self.index + self.frame_stack |
|
end_invalid = end_index + self.frame_stack + 1 |
|
if end_invalid > self.buffer_size: |
|
if end_index > self.buffer_size: |
|
end_index = end_index % self.buffer_size |
|
self.obs[self.index:self.buffer_size] = latest_obs |
|
self.obs[0:end_index] = latest_obs |
|
self.full = True |
|
else: |
|
self.obs[self.index:end_index] = latest_obs |
|
end_invalid = end_invalid % self.buffer_size |
|
self.valid[self.index:self.buffer_size] = False |
|
self.valid[0:end_invalid] = False |
|
else: |
|
self.obs[self.index:end_index] = latest_obs |
|
self.valid[self.index:end_invalid] = False |
|
self.index = end_index |
|
self.traj_index = 1 |
|
else: |
|
np.copyto(self.obs[self.index], latest_obs) |
|
np.copyto(self.act[self.index], time_step.action) |
|
self.rew[self.index] = time_step.reward |
|
self.dis[self.index] = time_step.discount |
|
self.valid[(self.index + self.frame_stack) % self.buffer_size] = False |
|
if self.traj_index >= self.nstep: |
|
self.valid[(self.index - self.nstep + 1) % self.buffer_size] = True |
|
self.index += 1 |
|
self.traj_index += 1 |
|
if self.index == self.buffer_size: |
|
self.index = 0 |
|
self.full = True |
|
|
|
def add(self, time_step): |
|
if self.index == -1: |
|
self._initial_setup(time_step) |
|
self.add_data_point(time_step) |
|
|
|
def __next__(self, ): |
|
indices = np.random.choice(self.valid.nonzero()[0], size=self.batch_size) |
|
return self.gather_nstep_indices(indices) |
|
|
|
def gather_nstep_indices(self, indices): |
|
n_samples = indices.shape[0] |
|
all_gather_ranges = np.stack([np.arange(indices[i] - self.frame_stack, indices[i] + self.nstep) |
|
for i in range(n_samples)], axis=0) % self.buffer_size |
|
gather_ranges = all_gather_ranges[:, self.frame_stack:] |
|
obs_gather_ranges = all_gather_ranges[:, :self.frame_stack] |
|
nobs_gather_ranges = all_gather_ranges[:, -self.frame_stack:] |
|
|
|
all_rewards = self.rew[gather_ranges] |
|
|
|
|
|
rew = np.sum(all_rewards * self.discount_vec, axis=1, keepdims=True) |
|
|
|
obs = np.reshape(self.obs[obs_gather_ranges], [n_samples, *self.obs_shape]) |
|
nobs = np.reshape(self.obs[nobs_gather_ranges], [n_samples, *self.obs_shape]) |
|
|
|
act = self.act[indices] |
|
dis = np.expand_dims(self.next_dis * self.dis[nobs_gather_ranges[:, -1]], axis=-1) |
|
|
|
if self.sarsa: |
|
nact = self.act[indices + self.nstep] |
|
return (obs, act, rew, dis, nobs, nact) |
|
|
|
return (obs, act, rew, dis, nobs) |
|
|
|
def __len__(self): |
|
if self.full: |
|
return self.buffer_size |
|
else: |
|
return self.index |
|
|
|
def get_train_and_val_indices(self, validation_percentage): |
|
all_indices = self.valid.nonzero()[0] |
|
num_indices = all_indices.shape[0] |
|
num_val = int(num_indices * validation_percentage) |
|
np.random.shuffle(all_indices) |
|
val_indices, train_indices = np.split(all_indices, |
|
[num_val]) |
|
return train_indices, val_indices |
|
|
|
def get_obs_act_batch(self, indices): |
|
n_samples = indices.shape[0] |
|
obs_gather_ranges = np.stack([np.arange(indices[i] - self.frame_stack, indices[i]) |
|
for i in range(n_samples)], axis=0) % self.buffer_size |
|
obs = np.reshape(self.obs[obs_gather_ranges], [n_samples, *self.obs_shape]) |
|
act = self.act[indices] |
|
return obs, act |
|
|