|
import copy |
|
import datetime |
|
import io |
|
import pathlib |
|
import pickle |
|
import uuid |
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
import tensorflow.compat.v1 as tf1 |
|
from tensorflow_probability import distributions as tfd |
|
|
|
|
|
class AttrDict(dict): |
|
__setattr__ = dict.__setitem__ |
|
__getattr__ = dict.__getitem__ |
|
|
|
|
|
class Module(tf.Module): |
|
def save(self, filename): |
|
values = tf.nest.map_structure(lambda x: x.numpy(), self.variables) |
|
with pathlib.Path(filename).open('wb') as f: |
|
pickle.dump(values, f) |
|
|
|
def load(self, filename): |
|
with pathlib.Path(filename).open('rb') as f: |
|
values = pickle.load(f) |
|
tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values) |
|
|
|
def get(self, name, ctor, *args, **kwargs): |
|
|
|
if not hasattr(self, '_modules'): |
|
self._modules = {} |
|
if name not in self._modules: |
|
self._modules[name] = ctor(*args, **kwargs) |
|
return self._modules[name] |
|
|
|
|
|
def video_summary(name, video, step=None, fps=20): |
|
name = name if isinstance(name, str) else name.decode('utf-8') |
|
if np.issubdtype(video.dtype, np.floating): |
|
video = np.clip(255 * video, 0, 255).astype(np.uint8) |
|
B, T, H, W, C = video.shape |
|
try: |
|
frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C)) |
|
summary = tf1.Summary() |
|
image = tf1.Summary.Image(height=B * H, width=T * W, colorspace=C) |
|
image.encoded_image_string = encode_gif(frames, fps) |
|
summary.value.add(tag=name + '/gif', image=image) |
|
tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step) |
|
except (IOError, OSError) as e: |
|
print('GIF summaries require ffmpeg in $PATH.', e) |
|
frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C)) |
|
tf.summary.image(name + '/grid', frames, step) |
|
|
|
|
|
def encode_gif(frames, fps): |
|
from subprocess import Popen, PIPE |
|
h, w, c = frames[0].shape |
|
pxfmt = {1: 'gray', 3: 'rgb24'}[c] |
|
cmd = ' '.join([ |
|
f'ffmpeg -y -f rawvideo -vcodec rawvideo', |
|
f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex', |
|
f'[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse', |
|
f'-r {fps:.02f} -f gif -']) |
|
proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE) |
|
for image in frames: |
|
proc.stdin.write(image.tostring()) |
|
out, err = proc.communicate() |
|
if proc.returncode: |
|
raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')])) |
|
del proc |
|
return out |
|
|
|
|
|
def simulate(agent, envs, steps=0, episodes=0, state=None): |
|
|
|
if state is None: |
|
step, episode = 0, 0 |
|
done = np.ones(len(envs), np.bool) |
|
length = np.zeros(len(envs), np.int32) |
|
obs = [None] * len(envs) |
|
agent_state = None |
|
else: |
|
step, episode, done, length, obs, agent_state = state |
|
while (steps and step < steps) or (episodes and episode < episodes): |
|
|
|
if done.any(): |
|
indices = [index for index, d in enumerate(done) if d] |
|
promises = [envs[i].reset(blocking=False) for i in indices] |
|
for index, promise in zip(indices, promises): |
|
obs[index] = promise() |
|
|
|
obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]} |
|
action, agent_state = agent(obs, done, agent_state) |
|
action = np.array(action) |
|
assert len(action) == len(envs) |
|
|
|
promises = [e.step(a, blocking=False) for e, a in zip(envs, action)] |
|
obs, _, done = zip(*[p()[:3] for p in promises]) |
|
obs = list(obs) |
|
done = np.stack(done) |
|
episode += int(done.sum()) |
|
length += 1 |
|
step += (done * length).sum() |
|
length *= (1 - done) |
|
|
|
return step - steps, episode - episodes, done, length, obs, agent_state |
|
|
|
|
|
def count_episodes(directory): |
|
filenames = directory.glob('*.npz') |
|
lengths = [int(n.stem.rsplit('-', 1)[-1]) - 1 for n in filenames] |
|
episodes, steps = len(lengths), sum(lengths) |
|
return episodes, steps |
|
|
|
|
|
def save_episodes(directory, episodes): |
|
directory = pathlib.Path(directory).expanduser() |
|
directory.mkdir(parents=True, exist_ok=True) |
|
timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S') |
|
for episode in episodes: |
|
identifier = str(uuid.uuid4().hex) |
|
length = len(episode['reward']) |
|
filename = directory / f'{timestamp}-{identifier}-{length}.npz' |
|
with io.BytesIO() as f1: |
|
np.savez_compressed(f1, **episode) |
|
f1.seek(0) |
|
with filename.open('wb') as f2: |
|
f2.write(f1.read()) |
|
|
|
|
|
def load_episodes(directory, rescan, length=None, balance=False, seed=0, load_episodes=1000): |
|
directory = pathlib.Path(directory).expanduser() |
|
random = np.random.RandomState(seed) |
|
filenames = list(directory.glob('*.npz')) |
|
load_episodes = min(len(filenames), load_episodes) |
|
if load_episodes is None: |
|
load_episodes = int(count_episodes(directory)[0] / 20) |
|
|
|
while True: |
|
cache = {} |
|
for filename in random.choice(list(directory.glob('*.npz')), |
|
load_episodes, |
|
replace=False): |
|
try: |
|
with filename.open('rb') as f: |
|
episode = np.load(f) |
|
episode = {k: episode[k] for k in episode.keys() if k not in ['image_128']} |
|
|
|
if 'discount' not in episode: |
|
episode['discount'] = np.where(episode['is_terminal'], 0., 1.) |
|
except Exception as e: |
|
print(f'Could not load episode: {e}') |
|
continue |
|
cache[filename] = episode |
|
|
|
keys = list(cache.keys()) |
|
for index in random.choice(len(keys), rescan): |
|
episode = copy.deepcopy(cache[keys[index]]) |
|
if length: |
|
total = len(next(iter(episode.values()))) |
|
available = total - length |
|
if available < 0: |
|
for key in episode.keys(): |
|
shape = episode[key].shape |
|
episode[key] = np.concatenate([episode[key], |
|
np.zeros([abs(available)] + list(shape[1:]))], |
|
axis=0) |
|
episode['mask'] = np.ones(length) |
|
episode['mask'][available:] = 0.0 |
|
elif available > 0: |
|
if balance: |
|
index = min(random.randint(0, total), available) |
|
else: |
|
index = int(random.randint(0, available)) |
|
episode = {k: v[index: index + length] for k, v in episode.items()} |
|
episode['mask'] = np.ones(length) |
|
else: |
|
episode['mask'] = np.ones_like(episode['reward']) |
|
else: |
|
episode['mask'] = np.ones_like(episode['reward']) |
|
yield episode |
|
|
|
|
|
class Adam(tf.Module): |
|
def __init__(self, name, modules, lr, clip=None, wd=None, wdpattern=r'.*'): |
|
self._name = name |
|
self._modules = modules |
|
self._clip = clip |
|
self._wd = wd |
|
self._wdpattern = wdpattern |
|
self._opt = tf.optimizers.Adam(lr) |
|
|
|
@property |
|
def variables(self): |
|
return self._opt.variables() |
|
|
|
def __call__(self, tape, loss): |
|
variables = [module.variables for module in self._modules] |
|
self._variables = tf.nest.flatten(variables) |
|
assert len(loss.shape) == 0, loss.shape |
|
grads = tape.gradient(loss, self._variables) |
|
norm = tf.linalg.global_norm(grads) |
|
if self._clip: |
|
grads, _ = tf.clip_by_global_norm(grads, self._clip, norm) |
|
self._opt.apply_gradients(zip(grads, self._variables)) |
|
return norm |
|
|
|
|
|
def args_type(default): |
|
if isinstance(default, bool): |
|
return lambda x: bool(['False', 'True'].index(x)) |
|
if isinstance(default, int): |
|
return lambda x: float(x) if ('e' in x or '.' in x) else int(x) |
|
if isinstance(default, pathlib.Path): |
|
return lambda x: pathlib.Path(x).expanduser() |
|
return type(default) |
|
|
|
|
|
def static_scan(fn, inputs, start, reverse=False): |
|
last = start |
|
outputs = [[] for _ in tf.nest.flatten(start)] |
|
indices = range(len(tf.nest.flatten(inputs)[0])) |
|
if reverse: |
|
indices = reversed(indices) |
|
for index in indices: |
|
inp = tf.nest.map_structure(lambda x: x[index], inputs) |
|
last = fn(last, inp) |
|
[o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))] |
|
if reverse: |
|
outputs = [list(reversed(x)) for x in outputs] |
|
outputs = [tf.stack(x, 0) for x in outputs] |
|
return tf.nest.pack_sequence_as(start, outputs) |
|
|
|
|
|
def _mnd_sample(self, sample_shape=(), seed=None, name='sample'): |
|
return tf.random.normal( |
|
tuple(sample_shape) + tuple(self.event_shape), |
|
self.mean(), self.stddev(), self.dtype, seed, name) |
|
|
|
|
|
tfd.MultivariateNormalDiag.sample = _mnd_sample |
|
|