vd4rl / baselines /lompo /tools.py
conglu's picture
upload code
6e5cc8b
import copy
import datetime
import io
import pathlib
import pickle
import uuid
import numpy as np
import tensorflow as tf
import tensorflow.compat.v1 as tf1
from tensorflow_probability import distributions as tfd
class AttrDict(dict):
__setattr__ = dict.__setitem__
__getattr__ = dict.__getitem__
class Module(tf.Module):
def save(self, filename):
values = tf.nest.map_structure(lambda x: x.numpy(), self.variables)
with pathlib.Path(filename).open('wb') as f:
pickle.dump(values, f)
def load(self, filename):
with pathlib.Path(filename).open('rb') as f:
values = pickle.load(f)
tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values)
def get(self, name, ctor, *args, **kwargs):
# Create or get layer by name to avoid mentioning it in the constructor.
if not hasattr(self, '_modules'):
self._modules = {}
if name not in self._modules:
self._modules[name] = ctor(*args, **kwargs)
return self._modules[name]
def video_summary(name, video, step=None, fps=20):
name = name if isinstance(name, str) else name.decode('utf-8')
if np.issubdtype(video.dtype, np.floating):
video = np.clip(255 * video, 0, 255).astype(np.uint8)
B, T, H, W, C = video.shape
try:
frames = video.transpose((1, 2, 0, 3, 4)).reshape((T, H, B * W, C))
summary = tf1.Summary()
image = tf1.Summary.Image(height=B * H, width=T * W, colorspace=C)
image.encoded_image_string = encode_gif(frames, fps)
summary.value.add(tag=name + '/gif', image=image)
tf.summary.experimental.write_raw_pb(summary.SerializeToString(), step)
except (IOError, OSError) as e:
print('GIF summaries require ffmpeg in $PATH.', e)
frames = video.transpose((0, 2, 1, 3, 4)).reshape((1, B * H, T * W, C))
tf.summary.image(name + '/grid', frames, step)
def encode_gif(frames, fps):
from subprocess import Popen, PIPE
h, w, c = frames[0].shape
pxfmt = {1: 'gray', 3: 'rgb24'}[c]
cmd = ' '.join([
f'ffmpeg -y -f rawvideo -vcodec rawvideo',
f'-r {fps:.02f} -s {w}x{h} -pix_fmt {pxfmt} -i - -filter_complex',
f'[0:v]split[x][z];[z]palettegen[y];[x]fifo[x];[x][y]paletteuse',
f'-r {fps:.02f} -f gif -'])
proc = Popen(cmd.split(' '), stdin=PIPE, stdout=PIPE, stderr=PIPE)
for image in frames:
proc.stdin.write(image.tostring())
out, err = proc.communicate()
if proc.returncode:
raise IOError('\n'.join([' '.join(cmd), err.decode('utf8')]))
del proc
return out
def simulate(agent, envs, steps=0, episodes=0, state=None):
# Initialize or unpack simulation state.
if state is None:
step, episode = 0, 0
done = np.ones(len(envs), np.bool)
length = np.zeros(len(envs), np.int32)
obs = [None] * len(envs)
agent_state = None
else:
step, episode, done, length, obs, agent_state = state
while (steps and step < steps) or (episodes and episode < episodes):
# Reset envs if necessary.
if done.any():
indices = [index for index, d in enumerate(done) if d]
promises = [envs[i].reset(blocking=False) for i in indices]
for index, promise in zip(indices, promises):
obs[index] = promise()
# Step agents.
obs = {k: np.stack([o[k] for o in obs]) for k in obs[0]}
action, agent_state = agent(obs, done, agent_state)
action = np.array(action)
assert len(action) == len(envs)
# Step envs.
promises = [e.step(a, blocking=False) for e, a in zip(envs, action)]
obs, _, done = zip(*[p()[:3] for p in promises])
obs = list(obs)
done = np.stack(done)
episode += int(done.sum())
length += 1
step += (done * length).sum()
length *= (1 - done)
# Return new state to allow resuming the simulation.
return step - steps, episode - episodes, done, length, obs, agent_state
def count_episodes(directory):
filenames = directory.glob('*.npz')
lengths = [int(n.stem.rsplit('-', 1)[-1]) - 1 for n in filenames]
episodes, steps = len(lengths), sum(lengths)
return episodes, steps
def save_episodes(directory, episodes):
directory = pathlib.Path(directory).expanduser()
directory.mkdir(parents=True, exist_ok=True)
timestamp = datetime.datetime.now().strftime('%Y%m%dT%H%M%S')
for episode in episodes:
identifier = str(uuid.uuid4().hex)
length = len(episode['reward'])
filename = directory / f'{timestamp}-{identifier}-{length}.npz'
with io.BytesIO() as f1:
np.savez_compressed(f1, **episode)
f1.seek(0)
with filename.open('wb') as f2:
f2.write(f1.read())
def load_episodes(directory, rescan, length=None, balance=False, seed=0, load_episodes=1000):
directory = pathlib.Path(directory).expanduser()
random = np.random.RandomState(seed)
filenames = list(directory.glob('*.npz'))
load_episodes = min(len(filenames), load_episodes)
if load_episodes is None:
load_episodes = int(count_episodes(directory)[0] / 20)
while True:
cache = {}
for filename in random.choice(list(directory.glob('*.npz')),
load_episodes,
replace=False):
try:
with filename.open('rb') as f:
episode = np.load(f)
episode = {k: episode[k] for k in episode.keys() if k not in ['image_128']}
# episode['reward'] = copy.deepcopy(episode['success'])
if 'discount' not in episode:
episode['discount'] = np.where(episode['is_terminal'], 0., 1.)
except Exception as e:
print(f'Could not load episode: {e}')
continue
cache[filename] = episode
keys = list(cache.keys())
for index in random.choice(len(keys), rescan):
episode = copy.deepcopy(cache[keys[index]])
if length:
total = len(next(iter(episode.values())))
available = total - length
if available < 0:
for key in episode.keys():
shape = episode[key].shape
episode[key] = np.concatenate([episode[key],
np.zeros([abs(available)] + list(shape[1:]))],
axis=0)
episode['mask'] = np.ones(length)
episode['mask'][available:] = 0.0
elif available > 0:
if balance:
index = min(random.randint(0, total), available)
else:
index = int(random.randint(0, available))
episode = {k: v[index: index + length] for k, v in episode.items()}
episode['mask'] = np.ones(length)
else:
episode['mask'] = np.ones_like(episode['reward'])
else:
episode['mask'] = np.ones_like(episode['reward'])
yield episode
class Adam(tf.Module):
def __init__(self, name, modules, lr, clip=None, wd=None, wdpattern=r'.*'):
self._name = name
self._modules = modules
self._clip = clip
self._wd = wd
self._wdpattern = wdpattern
self._opt = tf.optimizers.Adam(lr)
@property
def variables(self):
return self._opt.variables()
def __call__(self, tape, loss):
variables = [module.variables for module in self._modules]
self._variables = tf.nest.flatten(variables)
assert len(loss.shape) == 0, loss.shape
grads = tape.gradient(loss, self._variables)
norm = tf.linalg.global_norm(grads)
if self._clip:
grads, _ = tf.clip_by_global_norm(grads, self._clip, norm)
self._opt.apply_gradients(zip(grads, self._variables))
return norm
def args_type(default):
if isinstance(default, bool):
return lambda x: bool(['False', 'True'].index(x))
if isinstance(default, int):
return lambda x: float(x) if ('e' in x or '.' in x) else int(x)
if isinstance(default, pathlib.Path):
return lambda x: pathlib.Path(x).expanduser()
return type(default)
def static_scan(fn, inputs, start, reverse=False):
last = start
outputs = [[] for _ in tf.nest.flatten(start)]
indices = range(len(tf.nest.flatten(inputs)[0]))
if reverse:
indices = reversed(indices)
for index in indices:
inp = tf.nest.map_structure(lambda x: x[index], inputs)
last = fn(last, inp)
[o.append(l) for o, l in zip(outputs, tf.nest.flatten(last))]
if reverse:
outputs = [list(reversed(x)) for x in outputs]
outputs = [tf.stack(x, 0) for x in outputs]
return tf.nest.pack_sequence_as(start, outputs)
def _mnd_sample(self, sample_shape=(), seed=None, name='sample'):
return tf.random.normal(
tuple(sample_shape) + tuple(self.event_shape),
self.mean(), self.stddev(), self.dtype, seed, name)
tfd.MultivariateNormalDiag.sample = _mnd_sample