conglu's picture
upload code
6e5cc8b
raw
history blame
4.76 kB
import tensorflow as tf
from tensorflow_probability import distributions as tfd
from dreamerv2 import agent
from dreamerv2 import common
class Random(common.Module):
def __init__(self, config, act_space, wm, tfstep, reward):
self.config = config
self.act_space = self.act_space
def actor(self, feat):
shape = feat.shape[:-1] + self.act_space.shape
if self.config.actor.dist == 'onehot':
return common.OneHotDist(tf.zeros(shape))
else:
dist = tfd.Uniform(-tf.ones(shape), tf.ones(shape))
return tfd.Independent(dist, 1)
def train(self, start, context, data):
return None, {}
class Plan2Explore(common.Module):
def __init__(self, config, act_space, wm, tfstep, reward):
self.config = config
self.reward = reward
self.wm = wm
self.ac = agent.ActorCritic(config, act_space, tfstep)
self.actor = self.ac.actor
stoch_size = config.rssm.stoch
if config.rssm.discrete:
stoch_size *= config.rssm.discrete
size = {
'embed': 32 * config.encoder.cnn_depth,
'stoch': stoch_size,
'deter': config.rssm.deter,
'feat': config.rssm.stoch + config.rssm.deter,
}[self.config.disag_target]
self._networks = [
common.MLP(size, **config.expl_head)
for _ in range(config.disag_models)]
self.opt = common.Optimizer('expl', **config.expl_opt)
self.extr_rewnorm = common.StreamNorm(**self.config.expl_reward_norm)
self.intr_rewnorm = common.StreamNorm(**self.config.expl_reward_norm)
def train(self, start, context, data):
metrics = {}
stoch = start['stoch']
if self.config.rssm.discrete:
stoch = tf.reshape(
stoch, stoch.shape[:-2] + (stoch.shape[-2] * stoch.shape[-1]))
target = {
'embed': context['embed'],
'stoch': stoch,
'deter': start['deter'],
'feat': context['feat'],
}[self.config.disag_target]
inputs = context['feat']
if self.config.disag_action_cond:
action = tf.cast(data['action'], inputs.dtype)
inputs = tf.concat([inputs, action], -1)
metrics.update(self._train_ensemble(inputs, target))
metrics.update(self.ac.train(
self.wm, start, data['is_terminal'], self._intr_reward))
return None, metrics
def _intr_reward(self, seq):
inputs = seq['feat']
if self.config.disag_action_cond:
action = tf.cast(seq['action'], inputs.dtype)
inputs = tf.concat([inputs, action], -1)
preds = [head(inputs).mode() for head in self._networks]
disag = tf.tensor(preds).std(0).mean(-1)
if self.config.disag_log:
disag = tf.math.log(disag)
reward = self.config.expl_intr_scale * self.intr_rewnorm(disag)[0]
if self.config.expl_extr_scale:
reward += self.config.expl_extr_scale * self.extr_rewnorm(
self.reward(seq))[0]
return reward
def _train_ensemble(self, inputs, targets):
if self.config.disag_offset:
targets = targets[:, self.config.disag_offset:]
inputs = inputs[:, :-self.config.disag_offset]
targets = tf.stop_gradient(targets)
inputs = tf.stop_gradient(inputs)
with tf.GradientTape() as tape:
preds = [head(inputs) for head in self._networks]
loss = -sum([pred.log_prob(targets).mean() for pred in preds])
metrics = self.opt(tape, loss, self._networks)
return metrics
class ModelLoss(common.Module):
def __init__(self, config, act_space, wm, tfstep, reward):
self.config = config
self.reward = reward
self.wm = wm
self.ac = agent.ActorCritic(config, act_space, tfstep)
self.actor = self.ac.actor
self.head = common.MLP([], **self.config.expl_head)
self.opt = common.Optimizer('expl', **self.config.expl_opt)
def train(self, start, context, data):
metrics = {}
target = tf.cast(context[self.config.expl_model_loss], tf.float32)
with tf.GradientTape() as tape:
loss = -self.head(context['feat']).log_prob(target).mean()
metrics.update(self.opt(tape, loss, self.head))
metrics.update(self.ac.train(
self.wm, start, data['is_terminal'], self._intr_reward))
return None, metrics
def _intr_reward(self, seq):
reward = self.config.expl_intr_scale * self.head(seq['feat']).mode()
if self.config.expl_extr_scale:
reward += self.config.expl_extr_scale * self.reward(seq)
return reward