conglu's picture
upload code
6e5cc8b
raw
history blame
5.32 kB
import pathlib
import pickle
import re
import numpy as np
import tensorflow as tf
from tensorflow.keras import mixed_precision as prec
try:
from tensorflow.python.distribute import values
except Exception:
from google3.third_party.tensorflow.python.distribute import values
tf.tensor = tf.convert_to_tensor
for base in (tf.Tensor, tf.Variable, values.PerReplica):
base.mean = tf.math.reduce_mean
base.std = tf.math.reduce_std
base.var = tf.math.reduce_variance
base.sum = tf.math.reduce_sum
base.any = tf.math.reduce_any
base.all = tf.math.reduce_all
base.min = tf.math.reduce_min
base.max = tf.math.reduce_max
base.abs = tf.math.abs
base.logsumexp = tf.math.reduce_logsumexp
base.transpose = tf.transpose
base.reshape = tf.reshape
base.astype = tf.cast
# values.PerReplica.dtype = property(lambda self: self.values[0].dtype)
# tf.TensorHandle.__repr__ = lambda x: '<tensor>'
# tf.TensorHandle.__str__ = lambda x: '<tensor>'
# np.set_printoptions(threshold=5, edgeitems=0)
class Module(tf.Module):
def save(self, filename):
values = tf.nest.map_structure(lambda x: x.numpy(), self.variables)
amount = len(tf.nest.flatten(values))
count = int(sum(np.prod(x.shape) for x in tf.nest.flatten(values)))
print(f'Save checkpoint with {amount} tensors and {count} parameters.')
with pathlib.Path(filename).open('wb') as f:
pickle.dump(values, f)
def load(self, filename):
with pathlib.Path(filename).open('rb') as f:
values = pickle.load(f)
amount = len(tf.nest.flatten(values))
count = int(sum(np.prod(x.shape) for x in tf.nest.flatten(values)))
print(f'Load checkpoint with {amount} tensors and {count} parameters.')
tf.nest.map_structure(lambda x, y: x.assign(y), self.variables, values)
def get(self, name, ctor, *args, **kwargs):
# Create or get layer by name to avoid mentioning it in the constructor.
if not hasattr(self, '_modules'):
self._modules = {}
if name not in self._modules:
self._modules[name] = ctor(*args, **kwargs)
return self._modules[name]
class Optimizer(tf.Module):
def __init__(
self, name, lr, eps=1e-4, clip=None, wd=None,
opt='adam', wd_pattern=r'.*'):
assert 0 <= wd < 1
assert not clip or 1 <= clip
self._name = name
self._clip = clip
self._wd = wd
self._wd_pattern = wd_pattern
self._opt = {
'adam': lambda: tf.optimizers.Adam(lr, epsilon=eps),
'nadam': lambda: tf.optimizers.Nadam(lr, epsilon=eps),
'adamax': lambda: tf.optimizers.Adamax(lr, epsilon=eps),
'sgd': lambda: tf.optimizers.SGD(lr),
'momentum': lambda: tf.optimizers.SGD(lr, 0.9),
}[opt]()
self._mixed = (prec.global_policy().compute_dtype == tf.float16)
if self._mixed:
self._opt = prec.LossScaleOptimizer(self._opt, dynamic=True)
self._once = True
@property
def variables(self):
return self._opt.variables()
def __call__(self, tape, loss, modules):
assert loss.dtype is tf.float32, (self._name, loss.dtype)
assert len(loss.shape) == 0, (self._name, loss.shape)
metrics = {}
# Find variables.
modules = modules if hasattr(modules, '__len__') else (modules,)
varibs = tf.nest.flatten([module.variables for module in modules])
count = sum(np.prod(x.shape) for x in varibs)
if self._once:
print(f'Found {count} {self._name} parameters.')
self._once = False
# Check loss.
tf.debugging.check_numerics(loss, self._name + '_loss')
metrics[f'{self._name}_loss'] = loss
# Compute scaled gradient.
if self._mixed:
with tape:
loss = self._opt.get_scaled_loss(loss)
grads = tape.gradient(loss, varibs)
if self._mixed:
grads = self._opt.get_unscaled_gradients(grads)
if self._mixed:
metrics[f'{self._name}_loss_scale'] = self._opt.loss_scale
# Distributed sync.
context = tf.distribute.get_replica_context()
if context:
grads = context.all_reduce('mean', grads)
# Gradient clipping.
norm = tf.linalg.global_norm(grads)
if not self._mixed:
tf.debugging.check_numerics(norm, self._name + '_norm')
if self._clip:
grads, _ = tf.clip_by_global_norm(grads, self._clip, norm)
metrics[f'{self._name}_grad_norm'] = norm
# Weight decay.
if self._wd:
self._apply_weight_decay(varibs)
# Apply gradients.
self._opt.apply_gradients(
zip(grads, varibs),
experimental_aggregate_gradients=False)
return metrics
def _apply_weight_decay(self, varibs):
nontrivial = (self._wd_pattern != r'.*')
if nontrivial:
print('Applied weight decay to variables:')
for var in varibs:
if re.search(self._wd_pattern, self._name + '/' + var.name):
if nontrivial:
print('- ' + self._name + '/' + var.name)
var.assign((1 - self._wd) * var)