conglu's picture
upload code
6e5cc8b
raw
history blame
22.7 kB
import argparse
import collections
import functools
import itertools
import json
import multiprocessing as mp
import os
import pathlib
import re
import subprocess
import warnings
os.environ['NO_AT_BRIDGE'] = '1' # Hide X org false warning.
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import numpy as np
import pandas as pd
np.set_string_function(lambda x: f'<np.array shape={x.shape} dtype={x.dtype}>')
Run = collections.namedtuple('Run', 'task method seed xs ys')
PALETTES = dict(
discrete=(
'#377eb8', '#4daf4a', '#984ea3', '#e41a1c', '#ff7f00', '#a65628',
'#f781bf', '#888888', '#a6cee3', '#b2df8a', '#cab2d6', '#fb9a99',
),
contrast=(
'#0022ff', '#33aa00', '#ff0011', '#ddaa00', '#cc44dd', '#0088aa',
'#001177', '#117700', '#990022', '#885500', '#553366', '#006666',
),
gradient=(
'#fde725', '#a0da39', '#4ac16d', '#1fa187', '#277f8e', '#365c8d',
'#46327e', '#440154',
),
baselines=(
'#222222', '#666666', '#aaaaaa', '#cccccc',
),
)
LEGEND = dict(
fontsize='medium', numpoints=1, labelspacing=0, columnspacing=1.2,
handlelength=1.5, handletextpad=0.5, loc='lower center')
DEFAULT_BASELINES = ['d4pg', 'rainbow_sticky', 'human_gamer', 'impala']
def find_keys(args):
filenames = []
for indir in args.indir:
task = next(indir.iterdir()) # First only.
for method in task.iterdir():
seed = next(indir.iterdir()) # First only.
filenames += list(seed.glob('**/*.jsonl'))
keys = set()
for filename in filenames:
keys |= set(load_jsonl(filename).columns)
print(f'Keys ({len(keys)}):', ', '.join(keys), flush=True)
def load_runs(args):
total, toload = [], []
for indir in args.indir:
filenames = list(indir.glob('**/*.jsonl'))
total += filenames
for filename in filenames:
task, method, seed = filename.relative_to(indir).parts[:-1]
if not any(p.search(task) for p in args.tasks):
continue
if not any(p.search(method) for p in args.methods):
continue
toload.append((filename, indir))
print(f'Loading {len(toload)} of {len(total)} runs...')
jobs = [functools.partial(load_run, f, i, args) for f, i in toload]
# Disable async data loading:
# runs = [j() for j in jobs]
with mp.Pool(10) as pool:
promises = [pool.apply_async(j) for j in jobs]
runs = [p.get() for p in promises]
runs = [r for r in runs if r is not None]
return runs
def load_run(filename, indir, args):
task, method, seed = filename.relative_to(indir).parts[:-1]
prefix = f'indir{args.indir.index(indir) + 1}_'
if task == 'atari_jamesbond':
task = 'atari_james_bond'
seed = prefix + seed
if args.prefix:
method = prefix + method
df = load_jsonl(filename)
if df is None:
print('Skipping empty run')
return
try:
df = df[[args.xaxis, args.yaxis]].dropna()
if args.maxval:
df = df.replace([+np.inf], +args.maxval)
df = df.replace([-np.inf], -args.maxval)
df[args.yaxis] = df[args.yaxis].clip(-args.maxval, +args.maxval)
except KeyError:
return
xs = df[args.xaxis].to_numpy()
if args.xmult != 1:
xs = xs.astype(np.float32) * args.xmult
ys = df[args.yaxis].to_numpy()
bins = {
'atari': 1e6,
'dmc': 1e4,
'crafter': 1e4,
}.get(task.split('_')[0], 1e5) if args.bins == -1 else args.bins
if bins:
borders = np.arange(0, xs.max() + 1e-8, bins)
xs, ys = bin_scores(xs, ys, borders)
if not len(xs):
print('Skipping empty run', task, method, seed)
return
return Run(task, method, seed, xs, ys)
def load_baselines(patterns, prefix=False):
runs = []
directory = pathlib.Path(__file__).parent.parent / 'scores'
for filename in directory.glob('**/*_baselines.json'):
for task, methods in json.loads(filename.read_text()).items():
for method, score in methods.items():
if prefix:
method = f'baseline_{method}'
if not any(p.search(method) for p in patterns):
continue
runs.append(Run(task, method, None, None, score))
return runs
def stats(runs, baselines):
tasks = sorted(set(r.task for r in runs))
methods = sorted(set(r.method for r in runs))
seeds = sorted(set(r.seed for r in runs))
baseline = sorted(set(r.method for r in baselines))
print('Loaded', len(runs), 'runs.')
print(f'Tasks ({len(tasks)}):', ', '.join(tasks))
print(f'Methods ({len(methods)}):', ', '.join(methods))
print(f'Seeds ({len(seeds)}):', ', '.join(seeds))
print(f'Baselines ({len(baseline)}):', ', '.join(baseline))
def order_methods(runs, baselines, args):
methods = []
for pattern in args.methods:
for method in sorted(set(r.method for r in runs)):
if pattern.search(method):
if method not in methods:
methods.append(method)
if method not in args.colors:
index = len(args.colors) % len(args.palette)
args.colors[method] = args.palette[index]
non_baseline_colors = len(args.colors)
for pattern in args.baselines:
for method in sorted(set(r.method for r in baselines)):
if pattern.search(method):
if method not in methods:
methods.append(method)
if method not in args.colors:
index = len(args.colors) - non_baseline_colors
index = index % len(PALETTES['baselines'])
args.colors[method] = PALETTES['baselines'][index]
return methods
def figure(runs, methods, args):
tasks = sorted(set(r.task for r in runs if r.xs is not None))
rows = int(np.ceil((len(tasks) + len(args.add)) / args.cols))
figsize = args.size[0] * args.cols, args.size[1] * rows
fig, axes = plt.subplots(rows, args.cols, figsize=figsize, squeeze=False)
for task, ax in zip(tasks, axes.flatten()):
relevant = [r for r in runs if r.task == task]
plot(task, ax, relevant, methods, args)
for name, ax in zip(args.add, axes.flatten()[len(tasks):]):
ax.set_facecolor((0.9, 0.9, 0.9))
if name == 'median':
plot_combined(
'combined_median', ax, runs, methods, args,
agg=lambda x: np.nanmedian(x, -1))
elif name == 'mean':
plot_combined(
'combined_mean', ax, runs, methods, args,
agg=lambda x: np.nanmean(x, -1))
elif name == 'gamer_median':
plot_combined(
'combined_gamer_median', ax, runs, methods, args,
lo='random', hi='human_gamer',
agg=lambda x: np.nanmedian(x, -1))
elif name == 'gamer_mean':
plot_combined(
'combined_gamer_mean', ax, runs, methods, args,
lo='random', hi='human_gamer',
agg=lambda x: np.nanmean(x, -1))
elif name == 'record_mean':
plot_combined(
'combined_record_mean', ax, runs, methods, args,
lo='random', hi='record',
agg=lambda x: np.nanmean(x, -1))
elif name == 'clip_record_mean':
plot_combined(
'combined_clipped_record_mean', ax, runs, methods, args,
lo='random', hi='record', clip=True,
agg=lambda x: np.nanmean(x, -1))
elif name == 'seeds':
plot_combined(
'combined_seeds', ax, runs, methods, args,
agg=lambda x: np.isfinite(x).sum(-1))
elif name == 'human_above':
plot_combined(
'combined_above_human_gamer', ax, runs, methods, args,
agg=lambda y: (y >= 1.0).astype(float).sum(-1))
elif name == 'human_below':
plot_combined(
'combined_below_human_gamer', ax, runs, methods, args,
agg=lambda y: (y <= 1.0).astype(float).sum(-1))
else:
raise NotImplementedError(name)
if args.xlim:
for ax in axes[:-1].flatten():
ax.xaxis.get_offset_text().set_visible(False)
if args.xlabel:
for ax in axes[-1]:
ax.set_xlabel(args.xlabel)
if args.ylabel:
for ax in axes[:, 0]:
ax.set_ylabel(args.ylabel)
for ax in axes.flatten()[len(tasks) + len(args.add):]:
ax.axis('off')
legend(fig, args.labels, ncol=args.legendcols, **LEGEND)
return fig
def plot(task, ax, runs, methods, args):
assert runs
try:
title = task.split('_', 1)[1].replace('_', ' ').title()
except IndexError:
title = task.title()
ax.set_title(title)
xlim = [+np.inf, -np.inf]
for index, method in enumerate(methods):
relevant = [r for r in runs if r.method == method]
if not relevant:
continue
if any(r.xs is None for r in relevant):
baseline(index, method, ax, relevant, args)
else:
if args.agg == 'none':
xs, ys = curve_lines(index, task, method, ax, relevant, args)
else:
xs, ys = curve_area(index, task, method, ax, relevant, args)
if len(xs) == len(ys) == 0:
print(f'Skipping empty: {task} {method}')
continue
xlim = [min(xlim[0], np.nanmin(xs)), max(xlim[1], np.nanmax(xs))]
ax.ticklabel_format(axis='x', style='sci', scilimits=(0, 0))
steps = [1, 2, 2.5, 5, 10]
ax.xaxis.set_major_locator(ticker.MaxNLocator(args.xticks, steps=steps))
ax.yaxis.set_major_locator(ticker.MaxNLocator(args.yticks, steps=steps))
if np.isfinite(xlim).all():
ax.set_xlim(args.xlim or xlim)
if args.xlim:
ticks = sorted({*ax.get_xticks(), *args.xlim})
ticks = [x for x in ticks if args.xlim[0] <= x <= args.xlim[1]]
ax.set_xticks(ticks)
if args.ylim:
ax.set_ylim(args.ylim)
if args.ylimticks:
ticks = sorted({*ax.get_yticks(), *args.ylim})
ticks = [x for x in ticks if args.ylim[0] <= x <= args.ylim[1]]
ax.set_yticks(ticks)
def plot_combined(
name, ax, runs, methods, args, agg, lo=None, hi=None, clip=False):
tasks = sorted(set(run.task for run in runs if run.xs is not None))
seeds = list(set(run.seed for run in runs))
runs = [r for r in runs if r.task in tasks] # Discard unused baselines.
# Bin all runs onto the same X steps.
borders = sorted(
[r.xs for r in runs if r.xs is not None],
key=lambda x: np.nanmax(x))[-1]
for index, run in enumerate(runs):
if run.xs is None:
continue
xs, ys = bin_scores(run.xs, run.ys, borders, fill='last')
runs[index] = run._replace(xs=xs, ys=ys)
# Per-task normalization by low and high baseline.
if lo or hi:
mins = collections.defaultdict(list)
maxs = collections.defaultdict(list)
[mins[r.task].append(r.ys) for r in load_baselines([re.compile(lo)])]
[maxs[r.task].append(r.ys) for r in load_baselines([re.compile(hi)])]
mins = {task: min(ys) for task, ys in mins.items() if task in tasks}
maxs = {task: max(ys) for task, ys in maxs.items() if task in tasks}
missing_baselines = []
for task in tasks:
if task not in mins or task not in maxs:
missing_baselines.append(task)
if set(missing_baselines) == set(tasks):
print(f'No baselines found to normalize any tasks in {name} plot.')
else:
for task in missing_baselines:
print(f'No baselines found to normalize {task} in {name} plot.')
for index, run in enumerate(runs):
if run.task not in mins or run.task not in maxs:
continue
ys = (run.ys - mins[run.task]) / (maxs[run.task] - mins[run.task])
if clip:
ys = np.minimum(ys, 1.0)
runs[index] = run._replace(ys=ys)
# Aggregate across tasks but not methods or seeds.
combined = []
for method, seed in itertools.product(methods, seeds):
relevant = [r for r in runs if r.method == method and r.seed == seed]
if not relevant:
continue
if relevant[0].xs is None:
xs, ys = None, np.array([r.ys for r in relevant])
else:
xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in relevant]))
with warnings.catch_warnings(): # Ignore empty slice warnings.
warnings.simplefilter('ignore', category=RuntimeWarning)
combined.append(Run('combined', method, seed, xs, agg(ys)))
plot(name, ax, combined, methods, args)
def curve_lines(index, task, method, ax, runs, args):
zorder = 10000 - 10 * index - 1
for run in runs:
color = args.colors[method]
ax.plot(run.xs, run.ys, label=method, color=color, zorder=zorder)
xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in runs]))
return xs, ys
def curve_area(index, task, method, ax, runs, args):
xs, ys = stack_scores(*zip(*[(r.xs, r.ys) for r in runs]))
with warnings.catch_warnings(): # NaN buckets remain NaN.
warnings.simplefilter('ignore', category=RuntimeWarning)
if args.agg == 'std1':
mean, std = np.nanmean(ys, -1), np.nanstd(ys, -1)
lo, mi, hi = mean - std, mean, mean + std
elif args.agg == 'per0':
lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (0, 50, 100)]
elif args.agg == 'per5':
lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (5, 50, 95)]
elif args.agg == 'per25':
lo, mi, hi = [np.nanpercentile(ys, k, -1) for k in (25, 50, 75)]
else:
raise NotImplementedError(args.agg)
color = args.colors[method]
kw = dict(color=color, zorder=1000 - 10 * index, alpha=0.1, linewidths=0)
mask = ~np.isnan(mi)
xs, lo, mi, hi = xs[mask], lo[mask], mi[mask], hi[mask]
ax.fill_between(xs, lo, hi, **kw)
ax.plot(xs, mi, label=method, color=color, zorder=10000 - 10 * index - 1)
return xs, mi
def baseline(index, method, ax, runs, args):
assert all(run.xs is None for run in runs)
ys = np.array([run.ys for run in runs])
mean, std = ys.mean(), ys.std()
color = args.colors[method]
kw = dict(color=color, zorder=500 - 20 * index - 1, alpha=0.1, linewidths=0)
ax.fill_between([-np.inf, np.inf], [mean - std] * 2, [mean + std] * 2, **kw)
kw = dict(ls='--', color=color, zorder=5000 - 10 * index - 1)
ax.axhline(mean, label=method, **kw)
def legend(fig, mapping=None, **kwargs):
entries = {}
for ax in fig.axes:
for handle, label in zip(*ax.get_legend_handles_labels()):
if mapping and label in mapping:
label = mapping[label]
entries[label] = handle
leg = fig.legend(entries.values(), entries.keys(), **kwargs)
leg.get_frame().set_edgecolor('white')
extent = leg.get_window_extent(fig.canvas.get_renderer())
extent = extent.transformed(fig.transFigure.inverted())
yloc, xloc = kwargs['loc'].split()
y0 = dict(lower=extent.y1, center=0, upper=0)[yloc]
y1 = dict(lower=1, center=1, upper=extent.y0)[yloc]
x0 = dict(left=extent.x1, center=0, right=0)[xloc]
x1 = dict(left=1, center=1, right=extent.x0)[xloc]
fig.tight_layout(rect=[x0, y0, x1, y1], h_pad=0.5, w_pad=0.5)
def save(fig, args):
args.outdir.mkdir(parents=True, exist_ok=True)
filename = args.outdir / 'curves.png'
fig.savefig(filename, dpi=args.dpi)
print('Saved to', filename)
filename = args.outdir / 'curves.pdf'
fig.savefig(filename)
try:
subprocess.call(['pdfcrop', str(filename), str(filename)])
except FileNotFoundError:
print('Install texlive-extra-utils to crop PDF outputs.')
def bin_scores(xs, ys, borders, reducer=np.nanmean, fill='nan'):
order = np.argsort(xs)
xs, ys = xs[order], ys[order]
binned = []
with warnings.catch_warnings(): # Empty buckets become NaN.
warnings.simplefilter('ignore', category=RuntimeWarning)
for start, stop in zip(borders[:-1], borders[1:]):
left = (xs <= start).sum()
right = (xs <= stop).sum()
if left < right:
value = reducer(ys[left:right])
elif binned:
value = {'nan': np.nan, 'last': binned[-1]}[fill]
else:
value = np.nan
binned.append(value)
return borders[1:], np.array(binned)
def stack_scores(multiple_xs, multiple_ys, fill='last'):
longest_xs = sorted(multiple_xs, key=lambda x: len(x))[-1]
multiple_padded_ys = []
for xs, ys in zip(multiple_xs, multiple_ys):
assert (longest_xs[:len(xs)] == xs).all(), (list(xs), list(longest_xs))
value = {'nan': np.nan, 'last': ys[-1]}[fill]
padding = [value] * (len(longest_xs) - len(xs))
padded_ys = np.concatenate([ys, padding])
multiple_padded_ys.append(padded_ys)
stacked_ys = np.stack(multiple_padded_ys, -1)
return longest_xs, stacked_ys
def load_jsonl(filename):
try:
with filename.open() as f:
lines = list(f.readlines())
records = []
for index, line in enumerate(lines):
try:
records.append(json.loads(line))
except Exception:
if index == len(lines) - 1:
continue # Silently skip last line if it is incomplete.
raise ValueError(
f'Skipping invalid JSON line ({index + 1}/{len(lines) + 1}) in'
f'{filename}: {line}')
return pd.DataFrame(records)
except ValueError as e:
print('Invalid', filename, e)
return None
def save_runs(runs, filename):
filename.parent.mkdir(parents=True, exist_ok=True)
records = []
for run in runs:
if run.xs is None:
continue
records.append(dict(
task=run.task, method=run.method, seed=run.seed,
xs=run.xs.tolist(), ys=run.ys.tolist()))
runs = json.dumps(records)
filename.write_text(runs)
print('Saved', filename)
def main(args):
find_keys(args)
runs = load_runs(args)
save_runs(runs, args.outdir / 'runs.json')
baselines = load_baselines(args.baselines, args.prefix)
stats(runs, baselines)
methods = order_methods(runs, baselines, args)
if not runs:
print('Noting to plot.')
return
# Adjust options based on loaded runs.
tasks = set(r.task for r in runs)
if 'auto' in args.add:
index = args.add.index('auto')
del args.add[index]
atari = any(run.task.startswith('atari_') for run in runs)
if len(tasks) < 2:
pass
elif atari:
args.add[index:index] = [
'gamer_median', 'gamer_mean', 'record_mean', 'clip_record_mean',
]
else:
args.add[index:index] = ['mean', 'median']
args.cols = min(args.cols, len(tasks) + len(args.add))
args.legendcols = min(args.legendcols, args.cols)
print('Plotting...')
fig = figure(runs + baselines, methods, args)
save(fig, args)
def parse_args():
boolean = lambda x: bool(['False', 'True'].index(x))
parser = argparse.ArgumentParser()
parser.add_argument('--indir', nargs='+', type=pathlib.Path, required=True)
parser.add_argument('--indir-prefix', type=pathlib.Path)
parser.add_argument('--outdir', type=pathlib.Path, required=True)
parser.add_argument('--subdir', type=boolean, default=True)
parser.add_argument('--xaxis', type=str, default='step')
parser.add_argument('--yaxis', type=str, default='eval_return')
parser.add_argument('--tasks', nargs='+', default=[r'.*'])
parser.add_argument('--methods', nargs='+', default=[r'.*'])
parser.add_argument('--baselines', nargs='+', default=DEFAULT_BASELINES)
parser.add_argument('--prefix', type=boolean, default=False)
parser.add_argument('--bins', type=float, default=-1)
parser.add_argument('--agg', type=str, default='std1')
parser.add_argument('--size', nargs=2, type=float, default=[2.5, 2.3])
parser.add_argument('--dpi', type=int, default=80)
parser.add_argument('--cols', type=int, default=6)
parser.add_argument('--xlim', nargs=2, type=float, default=None)
parser.add_argument('--ylim', nargs=2, type=float, default=None)
parser.add_argument('--ylimticks', type=boolean, default=True)
parser.add_argument('--xlabel', type=str, default=None)
parser.add_argument('--ylabel', type=str, default=None)
parser.add_argument('--xticks', type=int, default=6)
parser.add_argument('--yticks', type=int, default=5)
parser.add_argument('--xmult', type=float, default=1)
parser.add_argument('--labels', nargs='+', default=None)
parser.add_argument('--palette', nargs='+', default=['contrast'])
parser.add_argument('--legendcols', type=int, default=4)
parser.add_argument('--colors', nargs='+', default={})
parser.add_argument('--maxval', type=float, default=0)
parser.add_argument('--add', nargs='+', type=str, default=['auto', 'seeds'])
args = parser.parse_args()
if args.subdir:
args.outdir /= args.indir[0].stem
if args.indir_prefix:
args.indir = [args.indir_prefix / indir for indir in args.indir]
args.indir = [d.expanduser() for d in args.indir]
args.outdir = args.outdir.expanduser()
if args.labels:
assert len(args.labels) % 2 == 0
args.labels = {k: v for k, v in zip(args.labels[:-1], args.labels[1:])}
if args.colors:
assert len(args.colors) % 2 == 0
args.colors = {k: v for k, v in zip(args.colors[:-1], args.colors[1:])}
args.tasks = [re.compile(p) for p in args.tasks]
args.methods = [re.compile(p) for p in args.methods]
args.baselines = [re.compile(p) for p in args.baselines]
if 'return' not in args.yaxis:
args.baselines = []
if args.prefix is None:
args.prefix = len(args.indir) > 1
if len(args.palette) == 1 and args.palette[0] in PALETTES:
args.palette = 10 * PALETTES[args.palette[0]]
if len(args.add) == 1 and args.add[0] == 'none':
args.add = []
return args
if __name__ == '__main__':
main(parse_args())