|
import tensorflow as tf |
|
import tensorflow_probability as tfp |
|
from tensorflow_probability import distributions as tfd |
|
|
|
|
|
_orig_random_categorical = tf.random.categorical |
|
|
|
|
|
def random_categorical(*args, **kwargs): |
|
kwargs['seed'] = None |
|
return _orig_random_categorical(*args, **kwargs) |
|
|
|
|
|
tf.random.categorical = random_categorical |
|
|
|
|
|
_orig_random_normal = tf.random.normal |
|
|
|
|
|
def random_normal(*args, **kwargs): |
|
kwargs['seed'] = None |
|
return _orig_random_normal(*args, **kwargs) |
|
|
|
|
|
tf.random.normal = random_normal |
|
|
|
|
|
class SampleDist: |
|
|
|
def __init__(self, dist, samples=100): |
|
self._dist = dist |
|
self._samples = samples |
|
|
|
@property |
|
def name(self): |
|
return 'SampleDist' |
|
|
|
def __getattr__(self, name): |
|
return getattr(self._dist, name) |
|
|
|
def mean(self): |
|
samples = self._dist.sample(self._samples) |
|
return samples.mean(0) |
|
|
|
def mode(self): |
|
sample = self._dist.sample(self._samples) |
|
logprob = self._dist.log_prob(sample) |
|
return tf.gather(sample, tf.argmax(logprob))[0] |
|
|
|
def entropy(self): |
|
sample = self._dist.sample(self._samples) |
|
logprob = self.log_prob(sample) |
|
return -logprob.mean(0) |
|
|
|
|
|
class OneHotDist(tfd.OneHotCategorical): |
|
|
|
def __init__(self, logits=None, probs=None, dtype=None): |
|
self._sample_dtype = dtype or tf.float32 |
|
super().__init__(logits=logits, probs=probs) |
|
|
|
def mode(self): |
|
return tf.cast(super().mode(), self._sample_dtype) |
|
|
|
def sample(self, sample_shape=(), seed=None): |
|
|
|
sample = tf.cast(super().sample(sample_shape, seed), self._sample_dtype) |
|
probs = self._pad(super().probs_parameter(), sample.shape) |
|
sample += tf.cast(probs - tf.stop_gradient(probs), self._sample_dtype) |
|
return sample |
|
|
|
def _pad(self, tensor, shape): |
|
tensor = super().probs_parameter() |
|
while len(tensor.shape) < len(shape): |
|
tensor = tensor[None] |
|
return tensor |
|
|
|
|
|
class TruncNormalDist(tfd.TruncatedNormal): |
|
|
|
def __init__(self, loc, scale, low, high, clip=1e-6, mult=1): |
|
super().__init__(loc, scale, low, high) |
|
self._clip = clip |
|
self._mult = mult |
|
|
|
def sample(self, *args, **kwargs): |
|
event = super().sample(*args, **kwargs) |
|
if self._clip: |
|
clipped = tf.clip_by_value( |
|
event, self.low + self._clip, self.high - self._clip) |
|
event = event - tf.stop_gradient(event) + tf.stop_gradient(clipped) |
|
if self._mult: |
|
event *= self._mult |
|
return event |
|
|
|
|
|
class TanhBijector(tfp.bijectors.Bijector): |
|
|
|
def __init__(self, validate_args=False, name='tanh'): |
|
super().__init__( |
|
forward_min_event_ndims=0, |
|
validate_args=validate_args, |
|
name=name) |
|
|
|
def _forward(self, x): |
|
return tf.nn.tanh(x) |
|
|
|
def _inverse(self, y): |
|
dtype = y.dtype |
|
y = tf.cast(y, tf.float32) |
|
y = tf.where( |
|
tf.less_equal(tf.abs(y), 1.), |
|
tf.clip_by_value(y, -0.99999997, 0.99999997), y) |
|
y = tf.atanh(y) |
|
y = tf.cast(y, dtype) |
|
return y |
|
|
|
def _forward_log_det_jacobian(self, x): |
|
log2 = tf.math.log(tf.constant(2.0, dtype=x.dtype)) |
|
return 2.0 * (log2 - x - tf.nn.softplus(-2.0 * x)) |
|
|