|
|
|
|
|
"""DCASE2018 Task3 Bird Audio Detection dataset.""" |
|
|
|
|
|
import os |
|
import gzip |
|
import shutil |
|
import pathlib |
|
import logging |
|
import datasets |
|
import typing as tp |
|
import pandas as pd |
|
import urllib.request |
|
from pathlib import Path |
|
from copy import deepcopy |
|
from tqdm.auto import tqdm |
|
from rich.logging import RichHandler |
|
|
|
logger = logging.getLogger(__name__) |
|
logger.addHandler(RichHandler()) |
|
logger.setLevel(logging.INFO) |
|
|
|
VERSION = "0.0.1" |
|
|
|
SAMPLE_RATE = 44_100 |
|
|
|
|
|
DEFAULT_XDG_CACHE_HOME = "~/.cache" |
|
XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME) |
|
DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface") |
|
HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME)) |
|
DEFAULT_HF_DATASETS_CACHE = os.path.join(HF_CACHE_HOME, "datasets") |
|
HF_DATASETS_CACHE = Path(os.getenv("HF_DATASETS_CACHE", DEFAULT_HF_DATASETS_CACHE)) |
|
|
|
|
|
class DCASE2018Task3KConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for DCASE2018 Task3.""" |
|
|
|
def __init__(self, features, **kwargs): |
|
super(DCASE2018Task3KConfig, self).__init__(version=datasets.Version(VERSION, ""), **kwargs) |
|
self.features = features |
|
|
|
|
|
class DCASE2018Task3(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
DCASE2018Task3KConfig( |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=None), |
|
"label": datasets.features.ClassLabel(names=['absence', 'presence']), |
|
} |
|
), |
|
name="hidaka2022investigation", |
|
description="", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "hidaka2022investigation" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="", |
|
features=self.config.features, |
|
supervised_keys=None, |
|
homepage="https://dcase.community/challenge2018/task-bird-audio-detection", |
|
citation="", |
|
task_templates=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
extensions = ['.wav'] |
|
|
|
|
|
train_audio_paths = [] |
|
for _filename in ['ff1010bird_wav.zip', 'BirdVox-DCASE-20k.zip']: |
|
DEV_URL = f'https://huggingface.co/datasets/confit/dcase2018-task3/resolve/main/{_filename}' |
|
_dev_save_path = os.path.join( |
|
HF_DATASETS_CACHE, 'confit___dcase2018-task3/hidaka2022investigation', VERSION |
|
) |
|
download_file( |
|
source=DEV_URL, |
|
dest=os.path.join(_dev_save_path, _filename), |
|
unpack=True, |
|
dest_unpack=os.path.join(_dev_save_path, 'extracted', _filename.split('.zip')[0]), |
|
) |
|
train_archive_path = os.path.join(_dev_save_path, 'extracted', _filename.split('.zip')[0]) |
|
_, _walker = fast_scandir(train_archive_path, extensions, recursive=True) |
|
train_audio_paths.extend(_walker) |
|
|
|
|
|
EVAL_URL = 'https://huggingface.co/datasets/confit/dcase2018-task3/resolve/main/warblrb10k_public_wav.zip' |
|
_eval_save_path = os.path.join( |
|
HF_DATASETS_CACHE, 'confit___dcase2018-task3/hidaka2022investigation', VERSION |
|
) |
|
_filename = 'warblrb10k_public_wav.zip' |
|
download_file( |
|
source=EVAL_URL, |
|
dest=os.path.join(_eval_save_path, _filename), |
|
unpack=True, |
|
dest_unpack=os.path.join(_eval_save_path, 'extracted', 'warblrb10k_public_wav'), |
|
) |
|
test_archive_path = os.path.join(_eval_save_path, 'extracted', 'warblrb10k_public_wav') |
|
_, test_audio_paths = fast_scandir(test_archive_path, extensions, recursive=True) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"audio_paths": train_audio_paths, "split": "train"} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"audio_paths": test_audio_paths, "split": "test"} |
|
), |
|
] |
|
|
|
def _generate_examples(self, audio_paths, split=None): |
|
if split == 'train': |
|
_df1 = pd.read_csv('https://huggingface.co/datasets/confit/dcase2018-task3/raw/main/BirdVoxDCASE20k_csvpublic.csv') |
|
_df2 = pd.read_csv('https://huggingface.co/datasets/confit/dcase2018-task3/raw/main/ff1010bird_metadata_2018.csv') |
|
metadata_df = pd.concat([_df1, _df2]).reset_index(drop=True) |
|
elif split == 'test': |
|
metadata_df = pd.read_csv('https://huggingface.co/datasets/confit/dcase2018-task3/raw/main/warblrb10k_public_metadata_2018.csv') |
|
|
|
fileid2class = {} |
|
for idx, row in metadata_df.iterrows(): |
|
has_bird = row['hasbird'] |
|
if int(has_bird) == 1: |
|
label = 'presence' |
|
elif int(has_bird) == 0: |
|
label = 'absence' |
|
fileid2class[f"{row['itemid']}.wav"] = label |
|
|
|
for guid, audio_path in enumerate(audio_paths): |
|
fileid = Path(audio_path).name |
|
label = fileid2class.get(fileid) |
|
yield guid, { |
|
"id": str(guid), |
|
"file": audio_path, |
|
"audio": audio_path, |
|
"label": label, |
|
} |
|
|
|
|
|
def fast_scandir(path: str, exts: tp.List[str], recursive: bool = False): |
|
|
|
|
|
subfolders, files = [], [] |
|
|
|
try: |
|
for f in os.scandir(path): |
|
try: |
|
if f.is_dir(): |
|
subfolders.append(f.path) |
|
elif f.is_file(): |
|
if os.path.splitext(f.name)[1].lower() in exts: |
|
files.append(f.path) |
|
except Exception: |
|
pass |
|
except Exception: |
|
pass |
|
|
|
if recursive: |
|
for path in list(subfolders): |
|
sf, f = fast_scandir(path, exts, recursive=recursive) |
|
subfolders.extend(sf) |
|
files.extend(f) |
|
|
|
return subfolders, files |
|
|
|
|
|
def download_file( |
|
source, |
|
dest, |
|
unpack=False, |
|
dest_unpack=None, |
|
replace_existing=False, |
|
write_permissions=False, |
|
): |
|
"""Downloads the file from the given source and saves it in the given |
|
destination path. |
|
Arguments |
|
--------- |
|
source : path or url |
|
Path of the source file. If the source is an URL, it downloads it from |
|
the web. |
|
dest : path |
|
Destination path. |
|
unpack : bool |
|
If True, it unpacks the data in the dest folder. |
|
dest_unpack: path |
|
Path where to store the unpacked dataset |
|
replace_existing : bool |
|
If True, replaces the existing files. |
|
write_permissions: bool |
|
When set to True, all the files in the dest_unpack directory will be granted write permissions. |
|
This option is active only when unpack=True. |
|
""" |
|
class DownloadProgressBar(tqdm): |
|
"""DownloadProgressBar class.""" |
|
|
|
def update_to(self, b=1, bsize=1, tsize=None): |
|
"""Needed to support multigpu training.""" |
|
if tsize is not None: |
|
self.total = tsize |
|
self.update(b * bsize - self.n) |
|
|
|
|
|
dest_dir = pathlib.Path(dest).resolve().parent |
|
dest_dir.mkdir(parents=True, exist_ok=True) |
|
if "http" not in source: |
|
shutil.copyfile(source, dest) |
|
|
|
elif not os.path.isfile(dest) or ( |
|
os.path.isfile(dest) and replace_existing |
|
): |
|
logger.info(f"Downloading {source} to {dest}") |
|
with DownloadProgressBar( |
|
unit="B", |
|
unit_scale=True, |
|
miniters=1, |
|
desc=source.split("/")[-1], |
|
) as t: |
|
urllib.request.urlretrieve( |
|
source, filename=dest, reporthook=t.update_to |
|
) |
|
else: |
|
logger.info(f"{dest} exists. Skipping download") |
|
|
|
|
|
if unpack: |
|
if dest_unpack is None: |
|
dest_unpack = os.path.dirname(dest) |
|
if os.path.exists(dest_unpack): |
|
logger.info(f"{dest_unpack} already exists. Skipping extraction") |
|
else: |
|
logger.info(f"Extracting {dest} to {dest_unpack}") |
|
|
|
if ( |
|
source.endswith(".tar.gz") |
|
or source.endswith(".tgz") |
|
or source.endswith(".gz") |
|
): |
|
out = dest.replace(".gz", "") |
|
with gzip.open(dest, "rb") as f_in: |
|
with open(out, "wb") as f_out: |
|
shutil.copyfileobj(f_in, f_out) |
|
else: |
|
shutil.unpack_archive(dest, dest_unpack) |
|
if write_permissions: |
|
set_writing_permissions(dest_unpack) |
|
|
|
|
|
def set_writing_permissions(folder_path): |
|
""" |
|
This function sets user writing permissions to all the files in the given folder. |
|
Arguments |
|
--------- |
|
folder_path : folder |
|
Folder whose files will be granted write permissions. |
|
""" |
|
for root, dirs, files in os.walk(folder_path): |
|
for file_name in files: |
|
file_path = os.path.join(root, file_name) |
|
|
|
os.chmod(file_path, 0o666) |