yangwang825 commited on
Commit
caf4084
·
verified ·
1 Parent(s): d282b9e

Create audioset.py

Browse files
Files changed (1) hide show
  1. audioset.py +154 -0
audioset.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+
3
+ """AudioSet sound event classification dataset."""
4
+
5
+
6
+ import os
7
+ import json
8
+ import textwrap
9
+ import datasets
10
+ import itertools
11
+ import typing as tp
12
+ import pandas as pd
13
+ from pathlib import Path
14
+ from huggingface_hub import hf_hub_download
15
+
16
+
17
+ SAMPLE_RATE = 22_050
18
+
19
+ _BALANCED_TRAIN_FILENAME = 'balanced_train_segments.zip'
20
+ _EVAL_FILENAME = 'eval_segments.zip'
21
+
22
+ ID2LABEL = json.load(
23
+ open(hf_hub_download("huggingface/label-files", "audioset-id2label.json", repo_type="dataset"), "r")
24
+ )
25
+ LABEL2ID = {v:k for k, v in ID2LABEL.items()}
26
+ CLASSES = list(set(LABEL2ID.keys()))
27
+
28
+
29
+ class AudioSetConfig(datasets.BuilderConfig):
30
+ """BuilderConfig for AudioSet."""
31
+
32
+ def __init__(self, features, **kwargs):
33
+ super(AudioSetConfig, self).__init__(version=datasets.Version("0.0.1", ""), **kwargs)
34
+ self.features = features
35
+
36
+
37
+ class AudioSet(datasets.GeneratorBasedBuilder):
38
+
39
+ BUILDER_CONFIGS = [
40
+ AudioSetConfig(
41
+ features=datasets.Features(
42
+ {
43
+ "file": datasets.Value("string"),
44
+ "audio": datasets.Audio(sampling_rate=SAMPLE_RATE),
45
+ "label": datasets.Sequence(datasets.ClassLabel(CLASSES)),
46
+ }
47
+ ),
48
+ name="balanced",
49
+ description="",
50
+ ),
51
+ ]
52
+
53
+ def _info(self):
54
+ return datasets.DatasetInfo(
55
+ description="",
56
+ features=self.config.features,
57
+ supervised_keys=None,
58
+ homepage="",
59
+ citation="",
60
+ task_templates=None,
61
+ )
62
+
63
+ def _preprocess_metadata_csv(self, csv_file):
64
+ df = pd.read_csv(csv_file, skiprows=2, sep=', ', engine='python')
65
+ df.rename(columns={'positive_labels': 'ids'}, inplace=True)
66
+ df['ids'] = [label.strip('\"').split(',') for label in df['ids']]
67
+ df['filename'] = (
68
+ 'Y' + df['# YTID'] + '.wav'
69
+ )
70
+ return df[['filename', 'ids']]
71
+
72
+ def _split_generators(self, dl_manager):
73
+ """Returns SplitGenerators."""
74
+ if self.config.name == 'balanced':
75
+ archive_path = dl_manager.extract(_BALANCED_TRAIN_FILENAME)
76
+ elif self.config.name == 'unbalanced':
77
+ archive_path = dl_manager.extract(_UNBALANCED_TRAIN_FILENAME)
78
+ test_archive_path = dl_manager.extract(_EVAL_FILENAME)
79
+
80
+ return [
81
+ datasets.SplitGenerator(
82
+ name=datasets.Split.TRAIN, gen_kwargs={"archive_path": archive_path, "split": "train"}
83
+ ),
84
+ datasets.SplitGenerator(
85
+ name=datasets.Split.TEST, gen_kwargs={"archive_path": test_archive_path, "split": "test"}
86
+ ),
87
+ ]
88
+
89
+ def _generate_examples(self, archive_path, split=None):
90
+ extensions = ['.wav']
91
+
92
+ test_metadata_csv = 'metadata/eval_segments.csv'
93
+ if self.config.name == 'balanced':
94
+ train_metadata_csv = 'metadata/balanced_train_segments.csv'
95
+ elif self.config.name == 'unbalanced':
96
+ train_metadata_csv = 'metadata/unbalanced_train_segments.csv'
97
+ train_metadata_df = self._preprocess_metadata_csv(train_metadata_csv) # ['filename', 'ids']
98
+ test_metadata_df = self._preprocess_metadata_csv(test_metadata_csv) # ['filename', 'ids']
99
+
100
+ class_labels_indices_df = pd.read_csv(
101
+ 'metadata/class_labels_indices.csv'
102
+ ) # ['index', 'mid', 'display_name']
103
+ mid2label = {
104
+ row['mid']:row['display_name'] for idx, row in class_labels_indices_df.iterrows()
105
+ }
106
+
107
+ def default_find_classes(audio_path):
108
+ fileid = Path(audio_path).name
109
+ ids = metadata_df.query(f'filename=="{fileid}"')['ids'].values.tolist()
110
+ ids = [
111
+ mid2label.get(mid, None) for mid in flatten(ids)
112
+ ]
113
+ return ids
114
+
115
+ _walker = fast_scandir(archive_path, extensions, recursive=True)
116
+
117
+ for guid, audio_path in enumerate(_walker):
118
+ yield guid, {
119
+ "id": str(guid),
120
+ "file": audio_path,
121
+ "audio": audio_path,
122
+ "label": default_find_classes(audio_path),
123
+ }
124
+
125
+
126
+ def flatten(list2d):
127
+ return list(itertools.chain.from_iterable(list2d))
128
+
129
+
130
+ def fast_scandir(path: str, exts: tp.List[str], recursive: bool = False):
131
+ # Scan files recursively faster than glob
132
+ # From github.com/drscotthawley/aeiou/blob/main/aeiou/core.py
133
+ subfolders, files = [], []
134
+
135
+ try: # hope to avoid 'permission denied' by this try
136
+ for f in os.scandir(path):
137
+ try: # 'hope to avoid too many levels of symbolic links' error
138
+ if f.is_dir():
139
+ subfolders.append(f.path)
140
+ elif f.is_file():
141
+ if os.path.splitext(f.name)[1].lower() in exts:
142
+ files.append(f.path)
143
+ except Exception:
144
+ pass
145
+ except Exception:
146
+ pass
147
+
148
+ if recursive:
149
+ for path in list(subfolders):
150
+ sf, f = fast_scandir(path, exts, recursive=recursive)
151
+ subfolders.extend(sf)
152
+ files.extend(f) # type: ignore
153
+
154
+ return subfolders, files