|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PAUQ: Text-to-SQL in Russian""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{bakshandaeva-etal-2022-pauq, |
|
title = "{PAUQ}: Text-to-{SQL} in {R}ussian", |
|
author = "Bakshandaeva, Daria and |
|
Somov, Oleg and |
|
Dmitrieva, Ekaterina and |
|
Davydova, Vera and |
|
Tutubalina, Elena", |
|
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022", |
|
month = dec, |
|
year = "2022", |
|
address = "Abu Dhabi, United Arab Emirates", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2022.findings-emnlp.175", |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Pauq is a first Russian text-to-SQL dataset translated from original Spider dataset |
|
with corrections and refinements of question, queries and databases. |
|
""" |
|
|
|
_LICENSE = "CC BY-SA 4.0" |
|
|
|
_HOMEPAGE = "https://github.com/ai-spiderweb/pauq" |
|
|
|
_URL = "https://huggingface.co/datasets/composite/pauq/resolve/main/formatted_pauq.zip" |
|
|
|
|
|
class Pauq(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="ru_pauq_tl", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig( |
|
name="en_pauq_tl", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig( |
|
name="ru_pauq_iid", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig( |
|
name="en_pauq_iid", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"db_id": datasets.Value("string"), |
|
"source": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"query": datasets.Value("string"), |
|
"sql": datasets.features.Sequence(datasets.Value("string")), |
|
"question_toks": datasets.features.Sequence(datasets.Value("string")), |
|
"query_toks": datasets.features.Sequence(datasets.Value("string")), |
|
"query_toks_no_value": datasets.features.Sequence(datasets.Value("string")), |
|
"masked_query": datasets.Value("string") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_filepath = dl_manager.download_and_extract(_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "splits/ru_iid_train.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "splits/ru_iid_test.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "splits/ru_tl_train.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "splits/ru_tl_est.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "splits/en_iid_train.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "splits/en_iid_test.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "splits/en_tl_train.json"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_filepath": os.path.join(downloaded_filepath, "splits/en_tl_test.json"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", data_filepath) |
|
with open(data_filepath, encoding="utf-8") as f: |
|
pauq = json.load(f) |
|
for idx, sample in enumerate(pauq): |
|
yield idx, { |
|
"id": sample["id"], |
|
"db_id": sample["db_id"], |
|
"source": sample["source"], |
|
"type": sample["type"], |
|
"query": sample["query"], |
|
"sql": datasets.Value("string"), |
|
"question": sample["question"], |
|
"question_toks": sample["question_toks"], |
|
"query_toks": sample["query_toks"], |
|
"query_toks_no_value": sample["query_toks_no_value"], |
|
"masked_query": sample["masked_query"] |
|
} |