Datasets:
Tasks:
Text Classification
Sub-tasks:
sentiment-classification
Languages:
Urdu
Size:
1K<n<10K
License:
"""Urdu Sentiment Corpus""" | |
import os | |
import datasets | |
_CITATION = """ | |
@inproceedings{khan2020usc, | |
title={Urdu Sentiment Corpus (v1.0): Linguistic Exploration and Visualization of Labeled Datasetfor Urdu Sentiment Analysis.}, | |
author={Khan, Muhammad Yaseen and Nizami, Muhammad Suffian}, | |
booktitle={2020 IEEE 2nd International Conference On Information Science & Communication Technology (ICISCT)}, | |
pages={}, | |
year={2020}, | |
organization={IEEE} | |
} | |
""" | |
_DESCRIPTION = """ | |
“Urdu Sentiment Corpus” (USC) shares the dat of Urdu tweets for the sentiment analysis and polarity detection. | |
The dataset is consisting of tweets and overall, the dataset is comprising over 17, 185 tokens | |
with 52% records as positive, and 48 % records as negative. | |
""" | |
_URL = "https://github.com/MuhammadYaseenKhan/Urdu-Sentiment-Corpus/archive/master.zip" | |
class UrduSentimentCorpus(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
labels_dic = { | |
"P": 0, | |
"N": 1, | |
"O": 2, | |
} | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"sentence": datasets.Value("string"), | |
"sentiment": datasets.ClassLabel(names=list(self.labels_dic.keys())), | |
} | |
), | |
homepage="https://github.com/MuhammadYaseenKhan/Urdu-Sentiment-Corpus", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
dl_path = dl_manager.download_and_extract(_URL) | |
dl_dir = os.path.join(dl_path, "Urdu-Sentiment-Corpus-master", "urdu-sentiment-corpus-v1.tsv") | |
# This dataset has no train test split | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": os.path.join(dl_dir)}, | |
), | |
] | |
def _generate_examples(self, filepath=None): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
next(f) | |
for id_, row in enumerate(f): | |
row = row.strip().split("\t") | |
if len(row) != 2: | |
continue | |
row[1] = self.labels_dic[row[1]] | |
yield id_, {"sentence": row[0][::-1], "sentiment": row[1]} | |