|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""StackSample: 10% of Stack Overflow Q&A""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Dataset with the text of 10% of questions and answers from the Stack Overflow programming Q&A website. |
|
|
|
This is organized as three tables: |
|
|
|
Questions contains the title, body, creation date, closed date (if applicable), score, and owner ID for all non-deleted Stack Overflow questions whose Id is a multiple of 10. |
|
Answers contains the body, creation date, score, and owner ID for each of the answers to these questions. The ParentId column links back to the Questions table. |
|
Tags contains the tags on each of these questions. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.kaggle.com/stackoverflow/stacksample" |
|
|
|
_LICENSE = "All Stack Overflow user contributions are licensed under CC-BY-SA 3.0 with attribution required." |
|
|
|
|
|
class SOStackSample(datasets.GeneratorBasedBuilder): |
|
"""StackSample: 10% of Stack Overflow Q&A""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="Answers", |
|
version=VERSION, |
|
description="This part of the dataset contains only posts that are answers.", |
|
), |
|
datasets.BuilderConfig( |
|
name="Questions", |
|
version=VERSION, |
|
description="This part of the dataset contains only posts that are questions.", |
|
), |
|
datasets.BuilderConfig( |
|
name="Tags", |
|
version=VERSION, |
|
description="This part of the dataset contains only tags of the questions in the question part of the StackSample dataset.", |
|
), |
|
] |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return """\ |
|
You must have a kaggle account. Go to https://www.kaggle.com/stackoverflow/stacksample |
|
and manually download the language of your interest. Once it is downloaded, |
|
go to the place where you downloaded it and unzip the folder. Three files named |
|
`Answers.csv`, `Questions.csv`, and `Tags.csv` will have appeared in your Downloads folder |
|
or whichever folder your browser chooses to save files to. |
|
so_stacksample can then be loaded using the following command |
|
`datasets.load_dataset("so_stacksample", "<csv_file_name>",data_dir="<path/to/folder>")`, |
|
where `<path/to/folder> is the path to the unzipped folder. Example if you downloaded |
|
and unzipped the folder in your downloads folder: |
|
`datasets.load_dataset("so_stacksample", "Answers", data_dir="/home/<user>/Downloads")` |
|
will load the `Answers.csv` dataset. |
|
""" |
|
|
|
def _info(self): |
|
if self.config.name == "Answers": |
|
features = datasets.Features( |
|
{ |
|
"Id": datasets.Value("int32"), |
|
"OwnerUserId": datasets.Value("int32"), |
|
"CreationDate": datasets.Value("string"), |
|
"ParentId": datasets.Value("int32"), |
|
"Score": datasets.Value("int32"), |
|
"Body": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.name == "Questions": |
|
features = datasets.Features( |
|
{ |
|
"Id": datasets.Value("int32"), |
|
"OwnerUserId": datasets.Value("int32"), |
|
"CreationDate": datasets.Value("string"), |
|
"ClosedDate": datasets.Value("string"), |
|
"Score": datasets.Value("int32"), |
|
"Title": datasets.Value("string"), |
|
"Body": datasets.Value("string"), |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"Id": datasets.Value("int32"), |
|
"Tag": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
path_to_manual_file = os.path.join( |
|
os.path.abspath(os.path.expanduser(dl_manager.manual_dir)), self.config.name + ".csv" |
|
) |
|
if not os.path.exists(path_to_manual_file): |
|
raise FileNotFoundError( |
|
f"{path_to_manual_file} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('so_stacksample', '{self.config.name}', data_dir=...)` that includes a file name {self.config.name + '.csv'}. Manual download instructions: \n{self.manual_download_instructions})" |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=self.config.name, |
|
gen_kwargs={ |
|
"filepath": path_to_manual_file, |
|
"split": self.config.name, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
|
|
|
|
|
|
|
|
with open(filepath, encoding="ISO-8859-1") as f: |
|
csv_reader = csv.reader(f, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True) |
|
next(csv_reader, None) |
|
for row_id, row in enumerate(csv_reader): |
|
if split == "Answers": |
|
id_, owner_user_id, creation_date, parent_id, score, body = row |
|
if owner_user_id == "NA": |
|
owner_user_id = -1 |
|
yield row_id, { |
|
"Id": id_, |
|
"OwnerUserId": owner_user_id, |
|
"CreationDate": creation_date, |
|
"ParentId": parent_id, |
|
"Score": score, |
|
"Body": body, |
|
} |
|
elif split == "Questions": |
|
id_, owner_user_id, creation_date, closed_date, score, title, body = row |
|
if owner_user_id == "NA": |
|
owner_user_id = -1 |
|
yield row_id, { |
|
"Id": id_, |
|
"OwnerUserId": owner_user_id, |
|
"CreationDate": creation_date, |
|
"ClosedDate": closed_date, |
|
"Score": score, |
|
"Title": title, |
|
"Body": body, |
|
} |
|
else: |
|
id_, tag = row |
|
yield row_id, { |
|
"Id": id_, |
|
"Tag": tag, |
|
} |
|
|