Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Urdu
Size:
10K - 100K
License:
Commit
•
a7bc399
1
Parent(s):
566be64
Convert dataset to Parquet (#3)
Browse files- Convert dataset to Parquet (06233c757e70673cf71249f47eea5166eb8d6288)
- Delete loading script (c5784feca89a65fd8742c09b860c04e8d51dc0c4)
- README.md +8 -3
- data/train-00000-of-00001.parquet +3 -0
- roman_urdu.py +0 -94
README.md
CHANGED
@@ -32,10 +32,15 @@ dataset_info:
|
|
32 |
'2': Neutral
|
33 |
splits:
|
34 |
- name: train
|
35 |
-
num_bytes:
|
36 |
num_examples: 20229
|
37 |
-
download_size:
|
38 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
39 |
---
|
40 |
|
41 |
# Dataset Card for Roman Urdu Dataset
|
|
|
32 |
'2': Neutral
|
33 |
splits:
|
34 |
- name: train
|
35 |
+
num_bytes: 1633411
|
36 |
num_examples: 20229
|
37 |
+
download_size: 1060033
|
38 |
+
dataset_size: 1633411
|
39 |
+
configs:
|
40 |
+
- config_name: default
|
41 |
+
data_files:
|
42 |
+
- split: train
|
43 |
+
path: data/train-*
|
44 |
---
|
45 |
|
46 |
# Dataset Card for Roman Urdu Dataset
|
data/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:435cd809536b800ee0b92c0c0db344adc35fd0cf7916e9d058ae07880836bb1e
|
3 |
+
size 1060033
|
roman_urdu.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Roman Urdu data corpus with 20,000 polarity labeled records"""
|
16 |
-
|
17 |
-
|
18 |
-
import csv
|
19 |
-
import os
|
20 |
-
|
21 |
-
import datasets
|
22 |
-
from datasets.tasks import TextClassification
|
23 |
-
|
24 |
-
|
25 |
-
_CITATION = """\
|
26 |
-
@InProceedings{Sharf:2018,
|
27 |
-
title = "Performing Natural Language Processing on Roman Urdu Datasets",
|
28 |
-
authors = "Zareen Sharf and Saif Ur Rahman",
|
29 |
-
booktitle = "International Journal of Computer Science and Network Security",
|
30 |
-
volume = "18",
|
31 |
-
number = "1",
|
32 |
-
pages = "141-148",
|
33 |
-
year = "2018"
|
34 |
-
}
|
35 |
-
|
36 |
-
@misc{Dua:2019,
|
37 |
-
author = "Dua, Dheeru and Graff, Casey",
|
38 |
-
year = "2017",
|
39 |
-
title = "{UCI} Machine Learning Repository",
|
40 |
-
url = "http://archive.ics.uci.edu/ml",
|
41 |
-
institution = "University of California, Irvine, School of Information and Computer Sciences"
|
42 |
-
}
|
43 |
-
"""
|
44 |
-
|
45 |
-
_DESCRIPTION = """\
|
46 |
-
This is an extensive compilation of Roman Urdu Dataset (Urdu written in Latin/Roman script) tagged for sentiment analysis.
|
47 |
-
"""
|
48 |
-
|
49 |
-
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Roman+Urdu+Data+Set"
|
50 |
-
|
51 |
-
_URL = "https://archive.ics.uci.edu/ml/machine-learning-databases/00458/Roman%20Urdu%20DataSet.csv"
|
52 |
-
|
53 |
-
|
54 |
-
class RomanUrdu(datasets.GeneratorBasedBuilder):
|
55 |
-
"""Roman Urdu sentences gathered from reviews of various e-commerce websites, comments on public Facebook pages, and twitter accounts, with positive, neutral, and negative polarity labels per each row."""
|
56 |
-
|
57 |
-
VERSION = datasets.Version("1.1.0")
|
58 |
-
|
59 |
-
def _info(self):
|
60 |
-
return datasets.DatasetInfo(
|
61 |
-
description=_DESCRIPTION,
|
62 |
-
features=datasets.Features(
|
63 |
-
{
|
64 |
-
"sentence": datasets.Value("string"),
|
65 |
-
"sentiment": datasets.features.ClassLabel(names=["Positive", "Negative", "Neutral"]),
|
66 |
-
}
|
67 |
-
),
|
68 |
-
supervised_keys=None,
|
69 |
-
homepage=_HOMEPAGE,
|
70 |
-
citation=_CITATION,
|
71 |
-
task_templates=[TextClassification(text_column="sentence", label_column="sentiment")],
|
72 |
-
)
|
73 |
-
|
74 |
-
def _split_generators(self, dl_manager):
|
75 |
-
data_dir = dl_manager.download_and_extract(_URL)
|
76 |
-
return [
|
77 |
-
datasets.SplitGenerator(
|
78 |
-
name=datasets.Split.TRAIN,
|
79 |
-
gen_kwargs={
|
80 |
-
"filepath": os.path.join(data_dir),
|
81 |
-
"split": "train",
|
82 |
-
},
|
83 |
-
),
|
84 |
-
]
|
85 |
-
|
86 |
-
def _generate_examples(self, filepath, split):
|
87 |
-
with open(filepath, encoding="utf-8") as f:
|
88 |
-
reader = csv.reader(f, delimiter=",")
|
89 |
-
for id_, row in enumerate(reader):
|
90 |
-
yield id_, {
|
91 |
-
"sentence": row[0],
|
92 |
-
# 'Neative' typo in original dataset
|
93 |
-
"sentiment": "Negative" if row[1] == "Neative" else row[1],
|
94 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|