|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Annotated dataset of dialogues where users recommend movies to each other.""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{li2018conversational, |
|
title={Towards Deep Conversational Recommendations}, |
|
author={Li, Raymond and Kahou, Samira Ebrahimi and Schulz, Hannes and Michalski, Vincent and Charlin, Laurent and Pal, Chris}, |
|
booktitle={Advances in Neural Information Processing Systems 31 (NIPS 2018)}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
ReDial (Recommendation Dialogues) is an annotated dataset of dialogues, where users |
|
recommend movies to each other. The dataset was collected by a team of researchers working at |
|
Polytechnique Montréal, MILA – Quebec AI Institute, Microsoft Research Montréal, HEC Montreal, and Element AI. |
|
|
|
The dataset allows research at the intersection of goal-directed dialogue systems |
|
(such as restaurant recommendation) and free-form (also called “chit-chat”) dialogue systems. |
|
""" |
|
|
|
_HOMEPAGE = "https://redialdata.github.io/website/" |
|
|
|
_LICENSE = "CC BY 4.0 License." |
|
|
|
_DATA_URL = "https://github.com/ReDialData/website/raw/data/redial_dataset.zip" |
|
|
|
|
|
class ReDial(datasets.GeneratorBasedBuilder): |
|
"""Annotated dataset of dialogues where users recommend movies to each other.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
question_features = { |
|
"movieId": datasets.Value("string"), |
|
"suggested": datasets.Value("int32"), |
|
"seen": datasets.Value("int32"), |
|
"liked": datasets.Value("int32"), |
|
} |
|
features = datasets.Features( |
|
{ |
|
"movieMentions": [ |
|
{ |
|
"movieId": datasets.Value("string"), |
|
"movieName": datasets.Value("string"), |
|
}, |
|
], |
|
"respondentQuestions": [question_features], |
|
"messages": [ |
|
{ |
|
"timeOffset": datasets.Value("int32"), |
|
"text": datasets.Value("string"), |
|
"senderWorkerId": datasets.Value("int32"), |
|
"messageId": datasets.Value("int32"), |
|
}, |
|
], |
|
"conversationId": datasets.Value("int32"), |
|
"respondentWorkerId": datasets.Value("int32"), |
|
"initiatorWorkerId": datasets.Value("int32"), |
|
"initiatorQuestions": [question_features], |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_DATA_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train_data.jsonl"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={"filepath": os.path.join(data_dir, "test_data.jsonl"), "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
examples = f.readlines() |
|
for id_, row in enumerate(examples): |
|
data = json.loads(row.strip()) |
|
d = {} |
|
movieMentions_list = [] |
|
for i in data["movieMentions"]: |
|
d["movieId"] = i |
|
d["movieName"] = data["movieMentions"][i] |
|
movieMentions_list.append(d) |
|
d = {} |
|
|
|
respondentQuestions_list = [] |
|
for i in data["respondentQuestions"]: |
|
d["movieId"] = i |
|
alpha = data["respondentQuestions"][i] |
|
z = {**d, **alpha} |
|
respondentQuestions_list.append(z) |
|
d = {} |
|
|
|
initiatorQuestions_list = [] |
|
for i in data["initiatorQuestions"]: |
|
d["movieId"] = i |
|
alpha = data["initiatorQuestions"][i] |
|
z = {**d, **alpha} |
|
initiatorQuestions_list.append(z) |
|
d = {} |
|
|
|
yield id_, { |
|
"movieMentions": movieMentions_list, |
|
"respondentQuestions": respondentQuestions_list, |
|
"messages": data["messages"], |
|
"conversationId": data["conversationId"], |
|
"respondentWorkerId": data["respondentWorkerId"], |
|
"initiatorWorkerId": data["initiatorWorkerId"], |
|
"initiatorQuestions": initiatorQuestions_list, |
|
} |
|
|