qa_zre / qa_zre.py
system's picture
system HF staff
Update files from the datasets library (from 1.0.0)
386f224
raw
history blame
3.52 kB
"""A dataset reducing relation extraction to simple reading comprehension questions"""
from __future__ import absolute_import, division, print_function
import csv
import os
import datasets
_CITATION = """\
@inproceedings{levy-etal-2017-zero,
title = "Zero-Shot Relation Extraction via Reading Comprehension",
author = "Levy, Omer and
Seo, Minjoon and
Choi, Eunsol and
Zettlemoyer, Luke",
booktitle = "Proceedings of the 21st Conference on Computational Natural Language Learning ({C}o{NLL} 2017)",
month = aug,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/K17-1034",
doi = "10.18653/v1/K17-1034",
pages = "333--342",
}
"""
_DESCRIPTION = """\
A dataset reducing relation extraction to simple reading comprehension questions
"""
_DATA_URL = "http://nlp.cs.washington.edu/zeroshot/relation_splits.tar.bz2"
class QaZre(datasets.GeneratorBasedBuilder):
"""QA-ZRE: Reducing relation extraction to simple reading comprehension questions"""
VERSION = datasets.Version("0.1.0")
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"relation": datasets.Value("string"),
"question": datasets.Value("string"),
"subject": datasets.Value("string"),
"context": datasets.Value("string"),
"answers": datasets.features.Sequence(datasets.Value("string")),
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="http://nlp.cs.washington.edu/zeroshot",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_dir = dl_manager.download_and_extract(_DATA_URL)
dl_dir = os.path.join(dl_dir, "relation_splits")
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": [os.path.join(dl_dir, "test." + str(i)) for i in range(10)],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepaths": [os.path.join(dl_dir, "dev." + str(i)) for i in range(10)],
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": [os.path.join(dl_dir, "train." + str(i)) for i in range(10)],
},
),
]
def _generate_examples(self, filepaths):
"""Yields examples."""
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
data = csv.reader(f, delimiter="\t")
for idx, row in enumerate(data):
yield idx, {
"relation": row[0],
"question": row[1],
"subject": row[2],
"context": row[3],
"answers": row[4:],
}