Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Polish
Libraries:
Datasets
pandas
License:
system HF staff commited on
Commit
6377c54
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

Files changed (5) hide show
  1. .gitattributes +27 -0
  2. README.md +141 -0
  3. dataset_infos.json +1 -0
  4. dummy/1.1.0/dummy_data.zip +3 -0
  5. dyk.py +94 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - other
6
+ languages:
7
+ - pl
8
+ licenses:
9
+ - bsd-3-clause
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1K<n<10K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - question-answering
18
+ task_ids:
19
+ - open-domain-qa
20
+ ---
21
+
22
+ # Dataset Card for [Dataset Name]
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-instances)
32
+ - [Data Splits](#data-instances)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Homepage:**
50
+ http://nlp.pwr.wroc.pl/en/tools-and-resources/resources/czy-wiesz-question-answering-dataset
51
+ - **Repository:**
52
+ - **Paper:**
53
+ - **Leaderboard:**
54
+ - **Point of Contact:**
55
+
56
+ ### Dataset Summary
57
+
58
+ The Did You Know (pol. Czy wiesz?) dataset consists of human-annotated question-answer pairs. The task is to predict if the answer is correct. We chose the negatives which have the largest token overlap with a question.
59
+
60
+ ### Supported Tasks and Leaderboards
61
+
62
+ [More Information Needed]
63
+
64
+ ### Languages
65
+
66
+ Polish
67
+
68
+ ## Dataset Structure
69
+
70
+ ### Data Instances
71
+
72
+ [More Information Needed]
73
+
74
+ ### Data Fields
75
+
76
+ - q_id: question id
77
+ - question: question sentence
78
+ - answer: answer sentence
79
+ - target: 1 if the answer is correct, 0 otherwise. Note that the test split doesn't have target values so -1 is used instead
80
+
81
+ ### Data Splits
82
+
83
+ [More Information Needed]
84
+
85
+ ## Dataset Creation
86
+
87
+ ### Curation Rationale
88
+
89
+ [More Information Needed]
90
+
91
+ ### Source Data
92
+
93
+ #### Initial Data Collection and Normalization
94
+
95
+ [More Information Needed]
96
+
97
+ #### Who are the source language producers?
98
+
99
+ [More Information Needed]
100
+
101
+ ### Annotations
102
+
103
+ #### Annotation process
104
+
105
+ [More Information Needed]
106
+
107
+ #### Who are the annotators?
108
+
109
+ [More Information Needed]
110
+
111
+ ### Personal and Sensitive Information
112
+
113
+ [More Information Needed]
114
+
115
+ ## Considerations for Using the Data
116
+
117
+ ### Social Impact of Dataset
118
+
119
+ [More Information Needed]
120
+
121
+ ### Discussion of Biases
122
+
123
+ [More Information Needed]
124
+
125
+ ### Other Known Limitations
126
+
127
+ [More Information Needed]
128
+
129
+ ## Additional Information
130
+
131
+ ### Dataset Curators
132
+
133
+ [More Information Needed]
134
+
135
+ ### Licensing Information
136
+
137
+ CC BY-SA 3.0
138
+
139
+ ### Citation Information
140
+
141
+ [More Information Needed]
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "The Did You Know (pol. Czy wiesz?) dataset consists of human-annotated question-answer pairs. The task is to predict if the answer is correct. We chose the negatives which have the largest token overlap with a question.\n", "citation": "@inproceedings{marcinczuk2013open,\ntitle={Open dataset for development of Polish Question Answering systems},\nauthor={Marcinczuk, Micha{\\l} and Ptak, Marcin and Radziszewski, Adam and Piasecki, Maciej},\nbooktitle={Proceedings of the 6th Language \\& Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, Wydawnictwo Poznanskie, Fundacja Uniwersytetu im. Adama Mickiewicza},\nyear={2013}\n}\n", "homepage": "http://nlp.pwr.wroc.pl/en/tools-and-resources/resources/czy-wiesz-question-answering-dataset", "license": "CC BY-SA 3.0", "features": {"q_id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"num_classes": 2, "names": ["0", "1"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "dyk", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1388690, "num_examples": 4154, "dataset_name": "dyk"}, "test": {"name": "test", "num_bytes": 353643, "num_examples": 1029, "dataset_name": "dyk"}}, "download_checksums": {"https://klejbenchmark.com/static/data/klej_dyk.zip": {"num_bytes": 685462, "checksum": "7c5acaf3244c7eecbac1283a32a1aa64ac0f56c5318baa10a84665463c4be0b9"}}, "download_size": 685462, "post_processing_size": null, "dataset_size": 1742333, "size_in_bytes": 2427795}}
dummy/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b3155d53304190766d307ed4740b5970df79dc4ad800e4cc31bc2f94e3caa8c
3
+ size 2003
dyk.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Did You Know? dataset"""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import csv
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ _CITATION = """\
26
+ @inproceedings{marcinczuk2013open,
27
+ title={Open dataset for development of Polish Question Answering systems},
28
+ author={Marcinczuk, Michal and Ptak, Marcin and Radziszewski, Adam and Piasecki, Maciej},
29
+ booktitle={Proceedings of the 6th Language & Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, Wydawnictwo Poznanskie, Fundacja Uniwersytetu im. Adama Mickiewicza},
30
+ year={2013}
31
+ }
32
+ """
33
+
34
+ _DESCRIPTION = """\
35
+ The Did You Know (pol. Czy wiesz?) dataset consists of human-annotated question-answer pairs. The task is to predict if the answer is correct. We chose the negatives which have the largest token overlap with a question.
36
+ """
37
+
38
+ _HOMEPAGE = "http://nlp.pwr.wroc.pl/en/tools-and-resources/resources/czy-wiesz-question-answering-dataset"
39
+
40
+ _LICENSE = "CC BY-SA 3.0"
41
+
42
+ _URLs = "https://klejbenchmark.com/static/data/klej_dyk.zip"
43
+
44
+
45
+ class DYK(datasets.GeneratorBasedBuilder):
46
+ """Did You Know? Dataset"""
47
+
48
+ VERSION = datasets.Version("1.1.0")
49
+
50
+ def _info(self):
51
+ return datasets.DatasetInfo(
52
+ description=_DESCRIPTION,
53
+ features=datasets.Features(
54
+ {
55
+ "q_id": datasets.Value("string"),
56
+ "question": datasets.Value("string"),
57
+ "answer": datasets.Value("string"),
58
+ "target": datasets.ClassLabel(names=["0", "1"]),
59
+ }
60
+ ),
61
+ supervised_keys=None,
62
+ homepage=_HOMEPAGE,
63
+ license=_LICENSE,
64
+ citation=_CITATION,
65
+ )
66
+
67
+ def _split_generators(self, dl_manager):
68
+ """Returns SplitGenerators."""
69
+ data_dir = dl_manager.download_and_extract(_URLs)
70
+ return [
71
+ datasets.SplitGenerator(
72
+ name=datasets.Split.TRAIN,
73
+ gen_kwargs={
74
+ "filepath": os.path.join(data_dir, "train.tsv"),
75
+ "split": "train",
76
+ },
77
+ ),
78
+ datasets.SplitGenerator(
79
+ name=datasets.Split.TEST,
80
+ gen_kwargs={"filepath": os.path.join(data_dir, "test_features.tsv"), "split": "test"},
81
+ ),
82
+ ]
83
+
84
+ def _generate_examples(self, filepath, split):
85
+ """ Yields examples. """
86
+ with open(filepath, encoding="utf-8") as f:
87
+ reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
88
+ for id_, row in enumerate(reader):
89
+ yield id_, {
90
+ "q_id": row["q_id"],
91
+ "question": row["question"],
92
+ "answer": row["answer"],
93
+ "target": -1 if split == "test" else row["target"],
94
+ }