Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Polish
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
43f5b0d
1 Parent(s): 724a8bd

Delete loading script

Browse files
Files changed (1) hide show
  1. dyk.py +0 -93
dyk.py DELETED
@@ -1,93 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """Did You Know? dataset"""
16
-
17
-
18
- import csv
19
- import os
20
-
21
- import datasets
22
-
23
-
24
- _CITATION = """\
25
- @inproceedings{marcinczuk2013open,
26
- title={Open dataset for development of Polish Question Answering systems},
27
- author={Marcinczuk, Michal and Ptak, Marcin and Radziszewski, Adam and Piasecki, Maciej},
28
- booktitle={Proceedings of the 6th Language & Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, Wydawnictwo Poznanskie, Fundacja Uniwersytetu im. Adama Mickiewicza},
29
- year={2013}
30
- }
31
- """
32
-
33
- _DESCRIPTION = """\
34
- The Did You Know (pol. Czy wiesz?) dataset consists of human-annotated question-answer pairs. The task is to predict if the answer is correct. We chose the negatives which have the largest token overlap with a question.
35
- """
36
-
37
- _HOMEPAGE = "http://nlp.pwr.wroc.pl/en/tools-and-resources/resources/czy-wiesz-question-answering-dataset"
38
-
39
- _LICENSE = "CC BY-SA 3.0"
40
-
41
- _URLs = "https://klejbenchmark.com/static/data/klej_dyk.zip"
42
-
43
-
44
- class DYK(datasets.GeneratorBasedBuilder):
45
- """Did You Know? Dataset"""
46
-
47
- VERSION = datasets.Version("1.1.0")
48
-
49
- def _info(self):
50
- return datasets.DatasetInfo(
51
- description=_DESCRIPTION,
52
- features=datasets.Features(
53
- {
54
- "q_id": datasets.Value("string"),
55
- "question": datasets.Value("string"),
56
- "answer": datasets.Value("string"),
57
- "target": datasets.ClassLabel(names=["0", "1"]),
58
- }
59
- ),
60
- supervised_keys=None,
61
- homepage=_HOMEPAGE,
62
- license=_LICENSE,
63
- citation=_CITATION,
64
- )
65
-
66
- def _split_generators(self, dl_manager):
67
- """Returns SplitGenerators."""
68
- data_dir = dl_manager.download_and_extract(_URLs)
69
- return [
70
- datasets.SplitGenerator(
71
- name=datasets.Split.TRAIN,
72
- gen_kwargs={
73
- "filepath": os.path.join(data_dir, "train.tsv"),
74
- "split": "train",
75
- },
76
- ),
77
- datasets.SplitGenerator(
78
- name=datasets.Split.TEST,
79
- gen_kwargs={"filepath": os.path.join(data_dir, "test_features.tsv"), "split": "test"},
80
- ),
81
- ]
82
-
83
- def _generate_examples(self, filepath, split):
84
- """Yields examples."""
85
- with open(filepath, encoding="utf-8") as f:
86
- reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
87
- for id_, row in enumerate(reader):
88
- yield id_, {
89
- "q_id": row["q_id"],
90
- "question": row["question"],
91
- "answer": row["answer"],
92
- "target": -1 if split == "test" else row["target"],
93
- }