|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CRD3 dataset""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@misc{campos2020doqa, |
|
title={DoQA -- Accessing Domain-Specific FAQs via Conversational QA}, |
|
author={Jon Ander Campos and Arantxa Otegi and Aitor Soroa and Jan Deriu and Mark Cieliebak and Eneko Agirre}, |
|
year={2020}, |
|
eprint={2005.01328}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
DoQA is a dataset for accessing Domain Specific FAQs via conversational QA that contains 2,437 information-seeking question/answer dialogues |
|
(10,917 questions in total) on three different domains: cooking, travel and movies. Note that we include in the generic concept of FAQs also |
|
Community Question Answering sites, as well as corporate information in intranets which is maintained in textual form similar to FAQs, often |
|
referred to as internal “knowledge bases”. |
|
|
|
These dialogues are created by crowd workers that play the following two roles: the user who asks questions about a given topic posted in Stack |
|
Exchange (https://stackexchange.com/), and the domain expert who replies to the questions by selecting a short span of text from the long textual |
|
reply in the original post. The expert can rephrase the selected span, in order to make it look more natural. The dataset covers unanswerable |
|
questions and some relevant dialogue acts. |
|
|
|
DoQA enables the development and evaluation of conversational QA systems that help users access the knowledge buried in domain specific FAQs. |
|
""" |
|
|
|
_URL = "https://ixa2.si.ehu.es/convai/doqa-v2.1.zip" |
|
|
|
|
|
class DoqaConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for DoQA.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""Constructs a DoQA. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
|
|
super(DoqaConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs) |
|
|
|
|
|
class Doqa(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
DoqaConfig( |
|
name="cooking", |
|
), |
|
DoqaConfig( |
|
name="movies", |
|
), |
|
DoqaConfig( |
|
name="travel", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"title": datasets.Value("string"), |
|
"background": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
"followup": datasets.Value("string"), |
|
"yesno": datasets.Value("string"), |
|
"orig_answer": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
), |
|
homepage="http://ixa.eus/node/12931", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
path = dl_manager.download_and_extract(_URL) |
|
if self.config.name == "cooking": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(path, "doqa-v2.1", "doqa_dataset", "doqa-cooking-test-v2.1.json") |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(path, "doqa-v2.1", "doqa_dataset", "doqa-cooking-dev-v2.1.json") |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(path, "doqa-v2.1", "doqa_dataset", "doqa-cooking-train-v2.1.json") |
|
}, |
|
), |
|
] |
|
elif self.config.name == "movies": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(path, "doqa-v2.1", "doqa_dataset", "doqa-movies-test-v2.1.json") |
|
}, |
|
) |
|
] |
|
elif self.config.name == "travel": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(path, "doqa-v2.1", "doqa_dataset", "doqa-travel-test-v2.1.json") |
|
}, |
|
) |
|
] |
|
else: |
|
raise ValueError("Unknown config name") |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
data = json.load(f) |
|
for row in data["data"]: |
|
title = row["title"] |
|
background = row["background"] |
|
paragraphs = row["paragraphs"] |
|
for p in paragraphs: |
|
context = p["context"] |
|
qas = p["qas"] |
|
for qa in qas: |
|
question = qa["question"] |
|
answers = qa["answers"] |
|
id1 = qa["id"] |
|
yesno = qa["yesno"] |
|
followup = qa["followup"] |
|
answer_text = [answer["text"] for answer in answers] |
|
answer_start = [answer["answer_start"] for answer in answers] |
|
|
|
orig_answer_start = [qa["orig_answer"]["answer_start"]] |
|
orig_answer_text = [qa["orig_answer"]["text"]] |
|
yield id1, { |
|
"title": title, |
|
"background": background, |
|
"context": context, |
|
"question": question, |
|
"id": id1, |
|
"answers": { |
|
"text": answer_text, |
|
"answer_start": answer_start, |
|
}, |
|
"followup": followup, |
|
"yesno": yesno, |
|
"orig_answer": { |
|
"text": orig_answer_text, |
|
"answer_start": orig_answer_start, |
|
}, |
|
} |
|
|