Datasets:
Delete loading script
Browse files- disaster_response_messages.py +0 -204
disaster_response_messages.py
DELETED
@@ -1,204 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""Multilingual Disaster Response Messages dataset."""
|
18 |
-
|
19 |
-
|
20 |
-
import csv
|
21 |
-
|
22 |
-
import datasets
|
23 |
-
|
24 |
-
|
25 |
-
_DESCRIPTION = """\
|
26 |
-
This dataset contains 30,000 messages drawn from events including an earthquake in Haiti in 2010, an earthquake in Chile in 2010, floods in Pakistan in 2010, super-storm Sandy in the U.S.A. in 2012, and news articles spanning a large number of years and 100s of different disasters.
|
27 |
-
The data has been encoded with 36 different categories related to disaster response and has been stripped of messages with sensitive information in their entirety.
|
28 |
-
Upon release, this is the featured dataset of a new Udacity course on Data Science and the AI4ALL summer school and is especially utile for text analytics and natural language processing (NLP) tasks and models.
|
29 |
-
The input data in this job contains thousands of untranslated disaster-related messages and their English translations.
|
30 |
-
"""
|
31 |
-
|
32 |
-
_CITATION = """\
|
33 |
-
@inproceedings{title={Multilingual Disaster Response Messages}
|
34 |
-
}
|
35 |
-
"""
|
36 |
-
|
37 |
-
_TRAIN_DOWNLOAD_URL = "https://s3.amazonaws.com/datasets.huggingface.co/disaster_response_messages_training.csv"
|
38 |
-
|
39 |
-
_TEST_DOWNLOAD_URL = "https://s3.amazonaws.com/datasets.huggingface.co/disaster_response_messages_test.csv"
|
40 |
-
|
41 |
-
_VALID_DOWNLOAD_URL = "https://s3.amazonaws.com/datasets.huggingface.co/disaster_response_messages_validation.csv"
|
42 |
-
|
43 |
-
|
44 |
-
class DisasterResponseMessages(datasets.GeneratorBasedBuilder):
|
45 |
-
"""Multilingual Disaster Response Messages dataset."""
|
46 |
-
|
47 |
-
def _info(self):
|
48 |
-
return datasets.DatasetInfo(
|
49 |
-
description=_DESCRIPTION,
|
50 |
-
features=datasets.Features(
|
51 |
-
{
|
52 |
-
"split": datasets.Value("string"),
|
53 |
-
"message": datasets.Value("string"),
|
54 |
-
"original": datasets.Value("string"),
|
55 |
-
"genre": datasets.Value("string"),
|
56 |
-
"related": datasets.ClassLabel(names=["false", "true", "maybe"]),
|
57 |
-
"PII": datasets.Value("int8"),
|
58 |
-
"request": datasets.ClassLabel(names=["false", "true"]),
|
59 |
-
"offer": datasets.Value("int8"),
|
60 |
-
"aid_related": datasets.ClassLabel(names=["false", "true"]),
|
61 |
-
"medical_help": datasets.ClassLabel(names=["false", "true"]),
|
62 |
-
"medical_products": datasets.ClassLabel(names=["false", "true"]),
|
63 |
-
"search_and_rescue": datasets.ClassLabel(names=["false", "true"]),
|
64 |
-
"security": datasets.ClassLabel(names=["false", "true"]),
|
65 |
-
"military": datasets.ClassLabel(names=["false", "true"]),
|
66 |
-
"child_alone": datasets.Value("int8"),
|
67 |
-
"water": datasets.ClassLabel(names=["false", "true"]),
|
68 |
-
"food": datasets.ClassLabel(names=["false", "true"]),
|
69 |
-
"shelter": datasets.ClassLabel(names=["false", "true"]),
|
70 |
-
"clothing": datasets.ClassLabel(names=["false", "true"]),
|
71 |
-
"money": datasets.ClassLabel(names=["false", "true"]),
|
72 |
-
"missing_people": datasets.ClassLabel(names=["false", "true"]),
|
73 |
-
"refugees": datasets.ClassLabel(names=["false", "true"]),
|
74 |
-
"death": datasets.ClassLabel(names=["false", "true"]),
|
75 |
-
"other_aid": datasets.ClassLabel(names=["false", "true"]),
|
76 |
-
"infrastructure_related": datasets.ClassLabel(names=["false", "true"]),
|
77 |
-
"transport": datasets.ClassLabel(names=["false", "true"]),
|
78 |
-
"buildings": datasets.ClassLabel(names=["false", "true"]),
|
79 |
-
"electricity": datasets.ClassLabel(names=["false", "true"]),
|
80 |
-
"tools": datasets.ClassLabel(names=["false", "true"]),
|
81 |
-
"hospitals": datasets.ClassLabel(names=["false", "true"]),
|
82 |
-
"shops": datasets.ClassLabel(names=["false", "true"]),
|
83 |
-
"aid_centers": datasets.ClassLabel(names=["false", "true"]),
|
84 |
-
"other_infrastructure": datasets.ClassLabel(names=["false", "true"]),
|
85 |
-
"weather_related": datasets.ClassLabel(names=["false", "true"]),
|
86 |
-
"floods": datasets.ClassLabel(names=["false", "true"]),
|
87 |
-
"storm": datasets.ClassLabel(names=["false", "true"]),
|
88 |
-
"fire": datasets.ClassLabel(names=["false", "true"]),
|
89 |
-
"earthquake": datasets.ClassLabel(names=["false", "true"]),
|
90 |
-
"cold": datasets.ClassLabel(names=["false", "true"]),
|
91 |
-
"other_weather": datasets.ClassLabel(names=["false", "true"]),
|
92 |
-
"direct_report": datasets.ClassLabel(names=["false", "true"]),
|
93 |
-
}
|
94 |
-
),
|
95 |
-
homepage="https://appen.com/datasets/combined-disaster-response-data/",
|
96 |
-
citation=_CITATION,
|
97 |
-
)
|
98 |
-
|
99 |
-
def _split_generators(self, dl_manager):
|
100 |
-
train_path, test_path, valid_path = dl_manager.download_and_extract(
|
101 |
-
[_TRAIN_DOWNLOAD_URL, _TEST_DOWNLOAD_URL, _VALID_DOWNLOAD_URL]
|
102 |
-
)
|
103 |
-
return [
|
104 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
105 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
106 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}),
|
107 |
-
]
|
108 |
-
|
109 |
-
def _generate_examples(self, filepath):
|
110 |
-
"""Generate Distaster Response Messages examples."""
|
111 |
-
with open(filepath, encoding="utf-8") as csv_file:
|
112 |
-
csv_reader = csv.reader(
|
113 |
-
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
|
114 |
-
)
|
115 |
-
next(csv_reader, None)
|
116 |
-
for id_, row in enumerate(csv_reader):
|
117 |
-
row = row[1:]
|
118 |
-
(
|
119 |
-
split,
|
120 |
-
message,
|
121 |
-
original,
|
122 |
-
genre,
|
123 |
-
related,
|
124 |
-
PII,
|
125 |
-
request,
|
126 |
-
offer,
|
127 |
-
aid_related,
|
128 |
-
medical_help,
|
129 |
-
medical_products,
|
130 |
-
search_and_rescue,
|
131 |
-
security,
|
132 |
-
military,
|
133 |
-
child_alone,
|
134 |
-
water,
|
135 |
-
food,
|
136 |
-
shelter,
|
137 |
-
clothing,
|
138 |
-
money,
|
139 |
-
missing_people,
|
140 |
-
refugees,
|
141 |
-
death,
|
142 |
-
other_aid,
|
143 |
-
infrastructure_related,
|
144 |
-
transport,
|
145 |
-
buildings,
|
146 |
-
electricity,
|
147 |
-
tools,
|
148 |
-
hospitals,
|
149 |
-
shops,
|
150 |
-
aid_centers,
|
151 |
-
other_infrastructure,
|
152 |
-
weather_related,
|
153 |
-
floods,
|
154 |
-
storm,
|
155 |
-
fire,
|
156 |
-
earthquake,
|
157 |
-
cold,
|
158 |
-
other_weather,
|
159 |
-
direct_report,
|
160 |
-
) = row
|
161 |
-
|
162 |
-
yield id_, {
|
163 |
-
"split": (split),
|
164 |
-
"message": (message),
|
165 |
-
"original": (original),
|
166 |
-
"genre": (genre),
|
167 |
-
"related": int(related),
|
168 |
-
"PII": int(PII),
|
169 |
-
"request": int(request),
|
170 |
-
"offer": int(offer),
|
171 |
-
"aid_related": int(aid_related),
|
172 |
-
"medical_help": int(medical_help),
|
173 |
-
"medical_products": int(medical_products),
|
174 |
-
"search_and_rescue": int(search_and_rescue),
|
175 |
-
"security": int(security),
|
176 |
-
"military": int(military),
|
177 |
-
"child_alone": int(child_alone),
|
178 |
-
"water": int(water),
|
179 |
-
"food": int(food),
|
180 |
-
"shelter": int(shelter),
|
181 |
-
"clothing": int(clothing),
|
182 |
-
"money": int(money),
|
183 |
-
"missing_people": int(missing_people),
|
184 |
-
"refugees": int(refugees),
|
185 |
-
"death": int(death),
|
186 |
-
"other_aid": int(other_aid),
|
187 |
-
"infrastructure_related": int(infrastructure_related),
|
188 |
-
"transport": int(transport),
|
189 |
-
"buildings": int(buildings),
|
190 |
-
"electricity": int(electricity),
|
191 |
-
"tools": int(tools),
|
192 |
-
"hospitals": int(hospitals),
|
193 |
-
"shops": int(shops),
|
194 |
-
"aid_centers": int(aid_centers),
|
195 |
-
"other_infrastructure": int(other_infrastructure),
|
196 |
-
"weather_related": int(weather_related),
|
197 |
-
"floods": int(floods),
|
198 |
-
"storm": int(storm),
|
199 |
-
"fire": int(fire),
|
200 |
-
"earthquake": int(earthquake),
|
201 |
-
"cold": int(cold),
|
202 |
-
"other_weather": int(other_weather),
|
203 |
-
"direct_report": int(direct_report),
|
204 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|