|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Multilingual Disaster Response Messages dataset.""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains 30,000 messages drawn from events including an earthquake in Haiti in 2010, an earthquake in Chile in 2010, floods in Pakistan in 2010, super-storm Sandy in the U.S.A. in 2012, and news articles spanning a large number of years and 100s of different disasters. |
|
The data has been encoded with 36 different categories related to disaster response and has been stripped of messages with sensitive information in their entirety. |
|
Upon release, this is the featured dataset of a new Udacity course on Data Science and the AI4ALL summer school and is especially utile for text analytics and natural language processing (NLP) tasks and models. |
|
The input data in this job contains thousands of untranslated disaster-related messages and their English translations. |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{title={Multilingual Disaster Response Messages} |
|
} |
|
""" |
|
|
|
_TRAIN_DOWNLOAD_URL = "https://s3.amazonaws.com/datasets.huggingface.co/disaster_response_messages_training.csv" |
|
|
|
_TEST_DOWNLOAD_URL = "https://s3.amazonaws.com/datasets.huggingface.co/disaster_response_messages_test.csv" |
|
|
|
_VALID_DOWNLOAD_URL = "https://s3.amazonaws.com/datasets.huggingface.co/disaster_response_messages_validation.csv" |
|
|
|
|
|
class DisasterResponseMessages(datasets.GeneratorBasedBuilder): |
|
"""Multilingual Disaster Response Messages dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"split": datasets.Value("string"), |
|
"message": datasets.Value("string"), |
|
"original": datasets.Value("string"), |
|
"genre": datasets.Value("string"), |
|
"related": datasets.ClassLabel(names=["false", "true", "maybe"]), |
|
"PII": datasets.Value("int8"), |
|
"request": datasets.ClassLabel(names=["false", "true"]), |
|
"offer": datasets.Value("int8"), |
|
"aid_related": datasets.ClassLabel(names=["false", "true"]), |
|
"medical_help": datasets.ClassLabel(names=["false", "true"]), |
|
"medical_products": datasets.ClassLabel(names=["false", "true"]), |
|
"search_and_rescue": datasets.ClassLabel(names=["false", "true"]), |
|
"security": datasets.ClassLabel(names=["false", "true"]), |
|
"military": datasets.ClassLabel(names=["false", "true"]), |
|
"child_alone": datasets.Value("int8"), |
|
"water": datasets.ClassLabel(names=["false", "true"]), |
|
"food": datasets.ClassLabel(names=["false", "true"]), |
|
"shelter": datasets.ClassLabel(names=["false", "true"]), |
|
"clothing": datasets.ClassLabel(names=["false", "true"]), |
|
"money": datasets.ClassLabel(names=["false", "true"]), |
|
"missing_people": datasets.ClassLabel(names=["false", "true"]), |
|
"refugees": datasets.ClassLabel(names=["false", "true"]), |
|
"death": datasets.ClassLabel(names=["false", "true"]), |
|
"other_aid": datasets.ClassLabel(names=["false", "true"]), |
|
"infrastructure_related": datasets.ClassLabel(names=["false", "true"]), |
|
"transport": datasets.ClassLabel(names=["false", "true"]), |
|
"buildings": datasets.ClassLabel(names=["false", "true"]), |
|
"electricity": datasets.ClassLabel(names=["false", "true"]), |
|
"tools": datasets.ClassLabel(names=["false", "true"]), |
|
"hospitals": datasets.ClassLabel(names=["false", "true"]), |
|
"shops": datasets.ClassLabel(names=["false", "true"]), |
|
"aid_centers": datasets.ClassLabel(names=["false", "true"]), |
|
"other_infrastructure": datasets.ClassLabel(names=["false", "true"]), |
|
"weather_related": datasets.ClassLabel(names=["false", "true"]), |
|
"floods": datasets.ClassLabel(names=["false", "true"]), |
|
"storm": datasets.ClassLabel(names=["false", "true"]), |
|
"fire": datasets.ClassLabel(names=["false", "true"]), |
|
"earthquake": datasets.ClassLabel(names=["false", "true"]), |
|
"cold": datasets.ClassLabel(names=["false", "true"]), |
|
"other_weather": datasets.ClassLabel(names=["false", "true"]), |
|
"direct_report": datasets.ClassLabel(names=["false", "true"]), |
|
} |
|
), |
|
homepage="https://appen.com/datasets/combined-disaster-response-data/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
train_path, test_path, valid_path = dl_manager.download_and_extract( |
|
[_TRAIN_DOWNLOAD_URL, _TEST_DOWNLOAD_URL, _VALID_DOWNLOAD_URL] |
|
) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate Distaster Response Messages examples.""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True |
|
) |
|
next(csv_reader, None) |
|
for id_, row in enumerate(csv_reader): |
|
row = row[1:] |
|
( |
|
split, |
|
message, |
|
original, |
|
genre, |
|
related, |
|
PII, |
|
request, |
|
offer, |
|
aid_related, |
|
medical_help, |
|
medical_products, |
|
search_and_rescue, |
|
security, |
|
military, |
|
child_alone, |
|
water, |
|
food, |
|
shelter, |
|
clothing, |
|
money, |
|
missing_people, |
|
refugees, |
|
death, |
|
other_aid, |
|
infrastructure_related, |
|
transport, |
|
buildings, |
|
electricity, |
|
tools, |
|
hospitals, |
|
shops, |
|
aid_centers, |
|
other_infrastructure, |
|
weather_related, |
|
floods, |
|
storm, |
|
fire, |
|
earthquake, |
|
cold, |
|
other_weather, |
|
direct_report, |
|
) = row |
|
|
|
yield id_, { |
|
"split": (split), |
|
"message": (message), |
|
"original": (original), |
|
"genre": (genre), |
|
"related": int(related), |
|
"PII": int(PII), |
|
"request": int(request), |
|
"offer": int(offer), |
|
"aid_related": int(aid_related), |
|
"medical_help": int(medical_help), |
|
"medical_products": int(medical_products), |
|
"search_and_rescue": int(search_and_rescue), |
|
"security": int(security), |
|
"military": int(military), |
|
"child_alone": int(child_alone), |
|
"water": int(water), |
|
"food": int(food), |
|
"shelter": int(shelter), |
|
"clothing": int(clothing), |
|
"money": int(money), |
|
"missing_people": int(missing_people), |
|
"refugees": int(refugees), |
|
"death": int(death), |
|
"other_aid": int(other_aid), |
|
"infrastructure_related": int(infrastructure_related), |
|
"transport": int(transport), |
|
"buildings": int(buildings), |
|
"electricity": int(electricity), |
|
"tools": int(tools), |
|
"hospitals": int(hospitals), |
|
"shops": int(shops), |
|
"aid_centers": int(aid_centers), |
|
"other_infrastructure": int(other_infrastructure), |
|
"weather_related": int(weather_related), |
|
"floods": int(floods), |
|
"storm": int(storm), |
|
"fire": int(fire), |
|
"earthquake": int(earthquake), |
|
"cold": int(cold), |
|
"other_weather": int(other_weather), |
|
"direct_report": int(direct_report), |
|
} |
|
|