|
|
|
|
|
"""OffensEval-TR 2020: A Corpus of Turkish Offensive Language on Social Media""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{coltekin2020lrec, |
|
author = {Cagri Coltekin}, |
|
year = {2020}, |
|
title = {A Corpus of Turkish Offensive Language on Social Media}, |
|
booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference}, |
|
pages = {6174--6184}, |
|
address = {Marseille, France}, |
|
url = {https://www.aclweb.org/anthology/2020.lrec-1.758}, |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
OffensEval-TR 2020 is a Turkish offensive language corpus. The corpus consist of randomly sampled tweets and annotated in a similar way to OffensEval and GermEval. |
|
""" |
|
|
|
_HOMEPAGE = "https://coltekin.github.io/offensive-turkish/" |
|
_DOWNLOAD_URL = "https://coltekin.github.io/offensive-turkish/offenseval2020-turkish.zip" |
|
_FOLDER_NAME = "offenseval-tr-{split}-v1" |
|
|
|
|
|
class OffensEval2020TRConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for OffensEval2020TR.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for OffensEval2020TR. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(OffensEval2020TRConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Offenseval2020TR(datasets.GeneratorBasedBuilder): |
|
"""OffensEval-TR 2020: A Corpus of Turkish Offensive Language on Social Media""" |
|
|
|
BUILDER_CONFIGS = [ |
|
OffensEval2020TRConfig( |
|
name="offenseval2020-turkish", |
|
version=datasets.Version("1.0.0"), |
|
description="OffensEval-TR 2020: A Corpus of Turkish Offensive Language on Social Media", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"tweet": datasets.Value("string"), |
|
"subtask_a": datasets.features.ClassLabel(names=["NOT", "OFF"]), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(_DOWNLOAD_URL) |
|
data_dir = os.path.join(dl_dir, self.config.name) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, _FOLDER_NAME.format(split="training"), "offenseval-tr-training-v1.tsv" |
|
), |
|
"labelpath": None, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
data_dir, _FOLDER_NAME.format(split="testset"), "offenseval-tr-testset-v1.tsv" |
|
), |
|
"labelpath": os.path.join( |
|
data_dir, _FOLDER_NAME.format(split="testset"), "offenseval-tr-labela-v1.tsv" |
|
), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, labelpath): |
|
"""Generate OffensEval2020TR examples.""" |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
|
|
if labelpath: |
|
with open(filepath, encoding="utf-8") as f: |
|
with open(labelpath, encoding="utf-8") as f2: |
|
reader_testset = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
reader_label = csv.DictReader( |
|
f2, delimiter=",", quoting=csv.QUOTE_NONE, fieldnames=["id", "subtask_a"] |
|
) |
|
list_label = list(reader_label) |
|
for idx, row in enumerate(reader_testset): |
|
row_label = list_label[idx] |
|
yield idx, {"id": row["id"], "tweet": row["tweet"], "subtask_a": row_label["subtask_a"]} |
|
else: |
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
for idx, row in enumerate(reader): |
|
yield idx, {"id": row["id"], "tweet": row["tweet"], "subtask_a": row["subtask_a"]} |
|
|