|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Yelp Review Full dataset for text classification.""" |
|
|
|
|
|
import csv |
|
|
|
import datasets |
|
from datasets.tasks import TextClassification |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{zhang2015character, |
|
title={Character-level convolutional networks for text classification}, |
|
author={Zhang, Xiang and Zhao, Junbo and LeCun, Yann}, |
|
booktitle={Advances in neural information processing systems}, |
|
pages={649--657}, |
|
year={2015} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The Yelp reviews dataset consists of reviews from Yelp. It is extracted from the Yelp Dataset Challenge 2015 data. |
|
The Yelp reviews full star dataset is constructed by Xiang Zhang (xiang.zhang@nyu.edu) from the above dataset. |
|
It is first used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. |
|
Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). |
|
""" |
|
|
|
_HOMEPAGE = "https://www.yelp.com/dataset" |
|
|
|
_LICENSE = "https://s3-media3.fl.yelpcdn.com/assets/srv0/engineering_pages/bea5c1e92bf3/assets/vendor/yelp-dataset-agreement.pdf" |
|
|
|
_URLs = { |
|
"yelp_review_full": "https://s3.amazonaws.com/fast-ai-nlp/yelp_review_full_csv.tgz", |
|
} |
|
|
|
|
|
class YelpReviewFullConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for YelpReviewFull.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for YelpReviewFull. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(YelpReviewFullConfig, self).__init__(**kwargs) |
|
|
|
|
|
class YelpReviewFull(datasets.GeneratorBasedBuilder): |
|
"""Yelp Review Full Star Dataset 2015.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
YelpReviewFullConfig( |
|
name="yelp_review_full", version=VERSION, description="Yelp Review Full Star Dataset 2015" |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"label": datasets.features.ClassLabel( |
|
names=[ |
|
"1 star", |
|
"2 star", |
|
"3 stars", |
|
"4 stars", |
|
"5 stars", |
|
] |
|
), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[TextClassification(text_column="text", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
my_urls = _URLs[self.config.name] |
|
archive = dl_manager.download(my_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": "yelp_review_full_csv/train.csv", "files": dl_manager.iter_archive(archive)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": "yelp_review_full_csv/test.csv", "files": dl_manager.iter_archive(archive)}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, files): |
|
"""Yields examples.""" |
|
for path, f in files: |
|
if path == filepath: |
|
csvfile = (line.decode("utf-8") for line in f) |
|
data = csv.reader(csvfile, delimiter=",", quoting=csv.QUOTE_NONNUMERIC) |
|
for id_, row in enumerate(data): |
|
yield id_, { |
|
"text": row[1], |
|
"label": int(row[0]) - 1, |
|
} |
|
break |
|
|