Upload 2 files
Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
Google Colab Notebooks/sd_token_similarity_calculator.ipynb
CHANGED
@@ -259,33 +259,25 @@
|
|
259 |
{
|
260 |
"cell_type": "code",
|
261 |
"source": [
|
262 |
-
"# @title
|
263 |
"\n",
|
264 |
"prompt_features = True # @param {\"type\":\"boolean\",\"placeholder\":\"π¦\"}\n",
|
265 |
"civitai_blue_set = True # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
266 |
"suffix = True # @param {\"type\":\"boolean\",\"placeholder\":\"πΉ\"}\n",
|
267 |
"prefix = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΈ\"}\n",
|
268 |
-
"emojis =
|
269 |
"#------#\n",
|
270 |
"\n",
|
271 |
"first_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΉ\"}\n",
|
272 |
"last_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΈ\"}\n",
|
273 |
-
"
|
274 |
-
"celebs = False # @param {\"type\":\"boolean\",\"placeholder\":\"ππ¨\"}\n",
|
275 |
-
"#These are borked\n",
|
276 |
-
"celebs_young = False # param {\"type\":\"boolean\",\"placeholder\":\"πΈ\"}\n",
|
277 |
"#-------#\n",
|
278 |
-
"\n",
|
279 |
"danbooru_tags = True # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
280 |
-
"\n",
|
281 |
-
"
|
282 |
-
"\n",
|
283 |
-
"tripple_nouns = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΌ\"}\n",
|
284 |
-
"\n",
|
285 |
"#-----#\n",
|
286 |
-
"female_fullnames =
|
287 |
"debug = False\n",
|
288 |
-
"\n",
|
289 |
"#------#\n",
|
290 |
"prompts = {}\n",
|
291 |
"text_encodings = {}\n",
|
@@ -316,21 +308,11 @@
|
|
316 |
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
317 |
"#--------#\n",
|
318 |
"\n",
|
319 |
-
"if full_names:\n",
|
320 |
-
" url = '/content/text-to-image-prompts/names/fullnames'\n",
|
321 |
-
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
322 |
-
"#--------#\n",
|
323 |
-
"\n",
|
324 |
"if celebs:\n",
|
325 |
" url = '/content/text-to-image-prompts/names/celebs/mixed'\n",
|
326 |
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
327 |
"#--------#\n",
|
328 |
"\n",
|
329 |
-
"if celebs_young :\n",
|
330 |
-
" url = '/content/text-to-image-prompts/names/celebs/young'\n",
|
331 |
-
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
332 |
-
"#--------#\n",
|
333 |
-
"\n",
|
334 |
"if female_fullnames:\n",
|
335 |
" url = '/content/text-to-image-prompts/names/fullnames'\n",
|
336 |
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
@@ -394,13 +376,14 @@
|
|
394 |
"source": [
|
395 |
"# @title \tβ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
396 |
"\n",
|
397 |
-
"\n",
|
398 |
"#image_index = 0 # @param {type:'number'}\n",
|
399 |
"# @markdown π₯ Load the data (only required one time)\n",
|
400 |
"load_the_data = False # @param {type:\"boolean\"}\n",
|
401 |
"\n",
|
402 |
"# @markdown πΌοΈ Choose a pre-encoded reference\n",
|
403 |
-
"index =
|
|
|
|
|
404 |
"\n",
|
405 |
"# @markdown βοΈ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
|
406 |
"\n",
|
@@ -475,7 +458,7 @@
|
|
475 |
"\n",
|
476 |
" # @markdown -----------\n",
|
477 |
" # @markdown βοΈπ Printing options\n",
|
478 |
-
" newline_Separator =
|
479 |
"\n",
|
480 |
" import random\n",
|
481 |
" list_size2 = 1000 # param {type:'number'}\n",
|
@@ -483,7 +466,7 @@
|
|
483 |
" rate_percent = 0 # param {type:\"slider\", min:0, max:100, step:1}\n",
|
484 |
"\n",
|
485 |
" # @markdown Repeat output N times\n",
|
486 |
-
" N =
|
487 |
"\n",
|
488 |
" # title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
489 |
" RANGE = list_size\n",
|
@@ -507,7 +490,7 @@
|
|
507 |
" _prompts = _prompts + prompt + separator\n",
|
508 |
" #------#\n",
|
509 |
" #------#\n",
|
510 |
-
"
|
511 |
" __prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
512 |
" __sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
513 |
" #------#\n",
|
@@ -527,8 +510,6 @@
|
|
527 |
" for i in range(N) : print(__prompts)\n",
|
528 |
" #-------#\n",
|
529 |
" #-------#\n",
|
530 |
-
"\n",
|
531 |
-
"\n",
|
532 |
"#-------#\n",
|
533 |
"image\n"
|
534 |
],
|
@@ -538,6 +519,196 @@
|
|
538 |
"execution_count": null,
|
539 |
"outputs": []
|
540 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
{
|
542 |
"cell_type": "code",
|
543 |
"source": [
|
@@ -609,6 +780,53 @@
|
|
609 |
"execution_count": null,
|
610 |
"outputs": []
|
611 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
612 |
{
|
613 |
"cell_type": "code",
|
614 |
"source": [
|
@@ -1006,7 +1224,7 @@
|
|
1006 |
"id": "SEPUbRwpVwRQ",
|
1007 |
"outputId": "b058be19-2fe5-4de2-ff3c-3e821043a177"
|
1008 |
},
|
1009 |
-
"execution_count":
|
1010 |
"outputs": [
|
1011 |
{
|
1012 |
"output_type": "stream",
|
@@ -1031,7 +1249,7 @@
|
|
1031 |
"id": "5oXvYS1aXdjt",
|
1032 |
"outputId": "00491826-4329-4c02-d038-bc3b221937b1"
|
1033 |
},
|
1034 |
-
"execution_count":
|
1035 |
"outputs": [
|
1036 |
{
|
1037 |
"output_type": "stream",
|
@@ -1340,7 +1558,7 @@
|
|
1340 |
"cellView": "form",
|
1341 |
"id": "Cbt78mgJYHgr"
|
1342 |
},
|
1343 |
-
"execution_count":
|
1344 |
"outputs": []
|
1345 |
},
|
1346 |
{
|
|
|
259 |
{
|
260 |
"cell_type": "code",
|
261 |
"source": [
|
262 |
+
"# @title π Select items to sample from\n",
|
263 |
"\n",
|
264 |
"prompt_features = True # @param {\"type\":\"boolean\",\"placeholder\":\"π¦\"}\n",
|
265 |
"civitai_blue_set = True # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
266 |
"suffix = True # @param {\"type\":\"boolean\",\"placeholder\":\"πΉ\"}\n",
|
267 |
"prefix = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΈ\"}\n",
|
268 |
+
"emojis = True # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
269 |
"#------#\n",
|
270 |
"\n",
|
271 |
"first_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΉ\"}\n",
|
272 |
"last_names = False # @param {\"type\":\"boolean\",\"placeholder\":\"πΈ\"}\n",
|
273 |
+
"celebs = True # @param {\"type\":\"boolean\",\"placeholder\":\"ππ¨\"}\n",
|
|
|
|
|
|
|
274 |
"#-------#\n",
|
|
|
275 |
"danbooru_tags = True # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
276 |
+
"lyrics = True # @param {\"type\":\"boolean\",\"placeholder\":\"πΌ\"}\n",
|
277 |
+
"tripple_nouns = True # @param {\"type\":\"boolean\",\"placeholder\":\"πΌ\"}\n",
|
|
|
|
|
|
|
278 |
"#-----#\n",
|
279 |
+
"female_fullnames = True # @param {\"type\":\"boolean\",\"placeholder\":\"π\"}\n",
|
280 |
"debug = False\n",
|
|
|
281 |
"#------#\n",
|
282 |
"prompts = {}\n",
|
283 |
"text_encodings = {}\n",
|
|
|
308 |
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
309 |
"#--------#\n",
|
310 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
311 |
"if celebs:\n",
|
312 |
" url = '/content/text-to-image-prompts/names/celebs/mixed'\n",
|
313 |
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
314 |
"#--------#\n",
|
315 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
316 |
"if female_fullnames:\n",
|
317 |
" url = '/content/text-to-image-prompts/names/fullnames'\n",
|
318 |
" prompts , text_encodings, nA = append_from_url(prompts , text_encodings, nA , url , '')\n",
|
|
|
376 |
"source": [
|
377 |
"# @title \tβ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
378 |
"\n",
|
|
|
379 |
"#image_index = 0 # @param {type:'number'}\n",
|
380 |
"# @markdown π₯ Load the data (only required one time)\n",
|
381 |
"load_the_data = False # @param {type:\"boolean\"}\n",
|
382 |
"\n",
|
383 |
"# @markdown πΌοΈ Choose a pre-encoded reference\n",
|
384 |
+
"index = 708 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
385 |
+
"\n",
|
386 |
+
"PROMPT_INDEX = index\n",
|
387 |
"\n",
|
388 |
"# @markdown βοΈ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
|
389 |
"\n",
|
|
|
458 |
"\n",
|
459 |
" # @markdown -----------\n",
|
460 |
" # @markdown βοΈπ Printing options\n",
|
461 |
+
" newline_Separator = False # @param {type:\"boolean\"}\n",
|
462 |
"\n",
|
463 |
" import random\n",
|
464 |
" list_size2 = 1000 # param {type:'number'}\n",
|
|
|
466 |
" rate_percent = 0 # param {type:\"slider\", min:0, max:100, step:1}\n",
|
467 |
"\n",
|
468 |
" # @markdown Repeat output N times\n",
|
469 |
+
" N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
470 |
"\n",
|
471 |
" # title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
472 |
" RANGE = list_size\n",
|
|
|
490 |
" _prompts = _prompts + prompt + separator\n",
|
491 |
" #------#\n",
|
492 |
" #------#\n",
|
493 |
+
" _prompts = fix_bad_symbols(_prompts)\n",
|
494 |
" __prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
495 |
" __sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
496 |
" #------#\n",
|
|
|
510 |
" for i in range(N) : print(__prompts)\n",
|
511 |
" #-------#\n",
|
512 |
" #-------#\n",
|
|
|
|
|
513 |
"#-------#\n",
|
514 |
"image\n"
|
515 |
],
|
|
|
519 |
"execution_count": null,
|
520 |
"outputs": []
|
521 |
},
|
522 |
+
{
|
523 |
+
"cell_type": "code",
|
524 |
+
"source": [
|
525 |
+
"# @title \tβ Create a savefile-set from the entire range of pre-encoded items\n",
|
526 |
+
"\n",
|
527 |
+
"#image_index = 0 # @param {type:'number'}\n",
|
528 |
+
"# @markdown π₯ Load the data (only required one time)\n",
|
529 |
+
"load_the_data = True # @param {type:\"boolean\"}\n",
|
530 |
+
"\n",
|
531 |
+
"# @markdown βοΈ Set the value for C in the reference <br> <br> sim = C* text_enc + image_enc*(1-C) <br><br>\n",
|
532 |
+
"\n",
|
533 |
+
"C = 0.5 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
534 |
+
"\n",
|
535 |
+
"# @markdown π« Penalize similarity to this prompt(optional)\n",
|
536 |
+
"\n",
|
537 |
+
"if(load_the_data):\n",
|
538 |
+
" from PIL import Image\n",
|
539 |
+
" import requests\n",
|
540 |
+
" target_prompts , target_text_encodings , urls , target_image_encodings , NUM_ITEMS = getPromptsAndLinks('/content/text-to-image-prompts/fusion')\n",
|
541 |
+
" from transformers import AutoTokenizer\n",
|
542 |
+
" tokenizer = AutoTokenizer.from_pretrained(\"openai/clip-vit-large-patch14\", clean_up_tokenization_spaces = False)\n",
|
543 |
+
" from transformers import CLIPProcessor, CLIPModel\n",
|
544 |
+
" processor = CLIPProcessor.from_pretrained(\"openai/clip-vit-large-patch14\" , clean_up_tokenization_spaces = True)\n",
|
545 |
+
" model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
546 |
+
" logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
|
547 |
+
"#---------#\n",
|
548 |
+
"\n",
|
549 |
+
"filename = 'blank.json'\n",
|
550 |
+
"path = '/content/text-to-image-prompts/fusion/'\n",
|
551 |
+
"print(f'reading {filename}....')\n",
|
552 |
+
"_index = 0\n",
|
553 |
+
"%cd {path}\n",
|
554 |
+
"with open(f'{filename}', 'r') as f:\n",
|
555 |
+
" data = json.load(f)\n",
|
556 |
+
"#------#\n",
|
557 |
+
"_df = pd.DataFrame({'count': data})['count']\n",
|
558 |
+
"_blank = {\n",
|
559 |
+
" key : value for key, value in _df.items()\n",
|
560 |
+
"}\n",
|
561 |
+
"#------#\n",
|
562 |
+
"\n",
|
563 |
+
"root_savefile_name = 'fusion_C05_X7_1000_'\n",
|
564 |
+
"output_folder = '/content/output/savefiles/'\n",
|
565 |
+
"my_mkdirs(output_folder)\n",
|
566 |
+
"NEG = '' # @param {type:'string'}\n",
|
567 |
+
"strength = 1 # @param {type:\"slider\", min:-5, max:5, step:0.1}\n",
|
568 |
+
"\n",
|
569 |
+
"for index in range(1667):\n",
|
570 |
+
"\n",
|
571 |
+
" PROMPT_INDEX = index\n",
|
572 |
+
"\n",
|
573 |
+
" prompt = target_prompts[f'{index}']\n",
|
574 |
+
" url = urls[f'{index}']\n",
|
575 |
+
" if url.find('perchance')>-1:\n",
|
576 |
+
" image = Image.open(requests.get(url, stream=True).raw)\n",
|
577 |
+
" else: continue #print(\"(No image for this ID)\")\n",
|
578 |
+
"\n",
|
579 |
+
" print(f\"no. {PROMPT_INDEX} : '{prompt}'\")\n",
|
580 |
+
"\n",
|
581 |
+
"\n",
|
582 |
+
" if(True):\n",
|
583 |
+
" text_features_A = target_text_encodings[f'{index}']\n",
|
584 |
+
" image_features_A = target_image_encodings[f'{index}']\n",
|
585 |
+
"\n",
|
586 |
+
" # text-similarity\n",
|
587 |
+
" sims = C * torch.matmul(text_tensor, text_features_A.t())\n",
|
588 |
+
"\n",
|
589 |
+
" neg_sims = 0*sims\n",
|
590 |
+
" if(NEG != ''):\n",
|
591 |
+
"\n",
|
592 |
+
" # Get text features for user input\n",
|
593 |
+
" inputs = tokenizer(text = NEG, padding=True, return_tensors=\"pt\")\n",
|
594 |
+
" text_features_NEG = model.get_text_features(**inputs)\n",
|
595 |
+
" text_features_NEG = text_features_A/text_features_A.norm(p=2, dim=-1, keepdim=True)\n",
|
596 |
+
"\n",
|
597 |
+
" # text-similarity\n",
|
598 |
+
" neg_sims = strength*torch.matmul(text_tensor, text_features_NEG.t())\n",
|
599 |
+
" #------#\n",
|
600 |
+
"\n",
|
601 |
+
" # plus image-similarity\n",
|
602 |
+
" sims = sims + (1-C) * torch.matmul(text_tensor, image_features_A.t()) * logit_scale\n",
|
603 |
+
"\n",
|
604 |
+
" # minus NEG-similarity\n",
|
605 |
+
" sims = sims - neg_sims\n",
|
606 |
+
"\n",
|
607 |
+
" # Sort the items\n",
|
608 |
+
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
609 |
+
"\n",
|
610 |
+
" # @title βοΈπ Print the results (Advanced)\n",
|
611 |
+
" list_size = 1000 # param {type:'number'}\n",
|
612 |
+
" start_at_index = 0 # param {type:'number'}\n",
|
613 |
+
" print_Similarity = True # param {type:\"boolean\"}\n",
|
614 |
+
" print_Prompts = True # param {type:\"boolean\"}\n",
|
615 |
+
" print_Prefix = True # param {type:\"boolean\"}\n",
|
616 |
+
" print_Descriptions = True # param {type:\"boolean\"}\n",
|
617 |
+
" compact_Output = True # param {type:\"boolean\"}\n",
|
618 |
+
"\n",
|
619 |
+
" # @markdown -----------\n",
|
620 |
+
" # @markdown βοΈπ Printing options\n",
|
621 |
+
" newline_Separator = False # @param {type:\"boolean\"}\n",
|
622 |
+
"\n",
|
623 |
+
" import random\n",
|
624 |
+
" list_size2 = 1000 # param {type:'number'}\n",
|
625 |
+
" start_at_index2 = 10000 # param {type:'number'}\n",
|
626 |
+
" rate_percent = 0 # param {type:\"slider\", min:0, max:100, step:1}\n",
|
627 |
+
"\n",
|
628 |
+
" # @markdown Repeat output N times\n",
|
629 |
+
" N = 7 # @param {type:\"slider\", min:0, max:10, step:1}\n",
|
630 |
+
"\n",
|
631 |
+
" # title Show the 100 most similiar suffix and prefix text-encodings to the text encoding\n",
|
632 |
+
" RANGE = list_size\n",
|
633 |
+
" separator = '|'\n",
|
634 |
+
" if newline_Separator : separator = separator + '\\n'\n",
|
635 |
+
"\n",
|
636 |
+
" _prompts = ''\n",
|
637 |
+
" _sims = ''\n",
|
638 |
+
" for _index in range(start_at_index + RANGE):\n",
|
639 |
+
" if _index < start_at_index : continue\n",
|
640 |
+
" index = indices[_index].item()\n",
|
641 |
+
"\n",
|
642 |
+
" prompt = prompts[f'{index}']\n",
|
643 |
+
" if rate_percent >= random.randint(0,100) : prompt = prompts[f'{random.randint(start_at_index2 , start_at_index2 + list_size2)}']\n",
|
644 |
+
"\n",
|
645 |
+
" #Remove duplicates\n",
|
646 |
+
" if _prompts.find(prompt + separator)<=-1:\n",
|
647 |
+
" _sims = _sims + f'{round(100*sims[index].item(), 2)} %' + separator\n",
|
648 |
+
" #-------#\n",
|
649 |
+
" _prompts = _prompts.replace(prompt + separator,'')\n",
|
650 |
+
" _prompts = _prompts + prompt + separator\n",
|
651 |
+
" #------#\n",
|
652 |
+
" #------#\n",
|
653 |
+
" _prompts = fix_bad_symbols(_prompts)\n",
|
654 |
+
" __prompts = ('{' + _prompts + '}').replace(separator + '}', '}')\n",
|
655 |
+
" __sims = ('{' + _sims + '}').replace(separator + '}', '}')\n",
|
656 |
+
" #------#\n",
|
657 |
+
" #--------#\n",
|
658 |
+
" _savefile = _blank\n",
|
659 |
+
" from safetensors.torch import load_file\n",
|
660 |
+
" import json , os , torch\n",
|
661 |
+
" import pandas as pd\n",
|
662 |
+
" #----#\n",
|
663 |
+
" def my_mkdirs(folder):\n",
|
664 |
+
" if os.path.exists(folder)==False:\n",
|
665 |
+
" os.makedirs(folder)\n",
|
666 |
+
" #------#\n",
|
667 |
+
" savefile_prompt = ''\n",
|
668 |
+
" for i in range(N) : savefile_prompt = savefile_prompt + ' ' + __prompts\n",
|
669 |
+
" _savefile['main'] = savefile_prompt.replace('\\n', ' ').replace(' ', ' ').replace(' ', ' ')\n",
|
670 |
+
" #------#\n",
|
671 |
+
" save_filename = f'{root_savefile_name}{PROMPT_INDEX}.json'\n",
|
672 |
+
" #-----#\n",
|
673 |
+
" %cd {output_folder}\n",
|
674 |
+
" print(f'Saving savefile {save_filename} to {output_folder}...')\n",
|
675 |
+
" with open(save_filename, 'w') as f:\n",
|
676 |
+
" json.dump(_savefile, f)\n",
|
677 |
+
" #---------#\n",
|
678 |
+
" continue\n",
|
679 |
+
"#-----------#"
|
680 |
+
],
|
681 |
+
"metadata": {
|
682 |
+
"id": "NZy2HrkZ1Rto"
|
683 |
+
},
|
684 |
+
"execution_count": null,
|
685 |
+
"outputs": []
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"cell_type": "code",
|
689 |
+
"source": [
|
690 |
+
"# Determine if this notebook is running on Colab or Kaggle\n",
|
691 |
+
"#Use https://www.kaggle.com/ if Google Colab GPU is busy\n",
|
692 |
+
"home_directory = '/content/'\n",
|
693 |
+
"using_Kaggle = os.environ.get('KAGGLE_URL_BASE','')\n",
|
694 |
+
"if using_Kaggle : home_directory = '/kaggle/working/'\n",
|
695 |
+
"%cd {home_directory}\n",
|
696 |
+
"#-------#\n",
|
697 |
+
"\n",
|
698 |
+
"# @title Download the text_encodings as .zip\n",
|
699 |
+
"import os\n",
|
700 |
+
"%cd {home_directory}\n",
|
701 |
+
"#os.remove(f'{home_directory}results.zip')\n",
|
702 |
+
"root_output_folder = home_directory + 'output/'\n",
|
703 |
+
"zip_dest = f'{home_directory}results.zip'\n",
|
704 |
+
"!zip -r {zip_dest} {root_output_folder}"
|
705 |
+
],
|
706 |
+
"metadata": {
|
707 |
+
"id": "DaV1ynRs1XeS"
|
708 |
+
},
|
709 |
+
"execution_count": null,
|
710 |
+
"outputs": []
|
711 |
+
},
|
712 |
{
|
713 |
"cell_type": "code",
|
714 |
"source": [
|
|
|
780 |
"execution_count": null,
|
781 |
"outputs": []
|
782 |
},
|
783 |
+
{
|
784 |
+
"cell_type": "code",
|
785 |
+
"source": [
|
786 |
+
"# @title Quick fix to created json files above\n",
|
787 |
+
"output_folder = '/content/output/fusion-gen-savefiles/'\n",
|
788 |
+
"index = 0\n",
|
789 |
+
"path = '/content/text-to-image-prompts/fusion-gen-savefiles'\n",
|
790 |
+
"\n",
|
791 |
+
"def my_mkdirs(folder):\n",
|
792 |
+
" if os.path.exists(folder)==False:\n",
|
793 |
+
" os.makedirs(folder)\n",
|
794 |
+
"\n",
|
795 |
+
"my_mkdirs(output_folder)\n",
|
796 |
+
"for filename in os.listdir(f'{path}'):\n",
|
797 |
+
" if filename.find('fusion_C05_X7_1000_')<=-1: continue\n",
|
798 |
+
" print(f'reading {filename}...')\n",
|
799 |
+
" %cd {path}\n",
|
800 |
+
" with open(f'{filename}', 'r') as f:\n",
|
801 |
+
" data = json.load(f)\n",
|
802 |
+
" _df = pd.DataFrame({'count': data})['count']\n",
|
803 |
+
" _savefile = {\n",
|
804 |
+
" key : value for key, value in _df.items()\n",
|
805 |
+
" }\n",
|
806 |
+
"\n",
|
807 |
+
" _savefile2 = {}\n",
|
808 |
+
"\n",
|
809 |
+
" for key in _savefile:\n",
|
810 |
+
" _savefile2[key] = _savefile[key]\n",
|
811 |
+
" if(key == \"_main\") :\n",
|
812 |
+
" _savefile2[key] = \"Prompt input only βοΈ\"\n",
|
813 |
+
" print(\"changed\")\n",
|
814 |
+
" #----------#\n",
|
815 |
+
"\n",
|
816 |
+
" save_filename = f'fusion_C05_X7_1000_{index}.json'\n",
|
817 |
+
" index = index + 1\n",
|
818 |
+
"\n",
|
819 |
+
" %cd {output_folder}\n",
|
820 |
+
" print(f'Saving savefile {save_filename} to {output_folder}...')\n",
|
821 |
+
" with open(save_filename, 'w') as f:\n",
|
822 |
+
" json.dump(_savefile2, f)"
|
823 |
+
],
|
824 |
+
"metadata": {
|
825 |
+
"id": "mRhTZ6wS1g0m"
|
826 |
+
},
|
827 |
+
"execution_count": null,
|
828 |
+
"outputs": []
|
829 |
+
},
|
830 |
{
|
831 |
"cell_type": "code",
|
832 |
"source": [
|
|
|
1224 |
"id": "SEPUbRwpVwRQ",
|
1225 |
"outputId": "b058be19-2fe5-4de2-ff3c-3e821043a177"
|
1226 |
},
|
1227 |
+
"execution_count": null,
|
1228 |
"outputs": [
|
1229 |
{
|
1230 |
"output_type": "stream",
|
|
|
1249 |
"id": "5oXvYS1aXdjt",
|
1250 |
"outputId": "00491826-4329-4c02-d038-bc3b221937b1"
|
1251 |
},
|
1252 |
+
"execution_count": null,
|
1253 |
"outputs": [
|
1254 |
{
|
1255 |
"output_type": "stream",
|
|
|
1558 |
"cellView": "form",
|
1559 |
"id": "Cbt78mgJYHgr"
|
1560 |
},
|
1561 |
+
"execution_count": null,
|
1562 |
"outputs": []
|
1563 |
},
|
1564 |
{
|