Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
@@ -25,6 +25,17 @@
|
|
25 |
"id": "cRV2YWomjMBU"
|
26 |
}
|
27 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
{
|
29 |
"cell_type": "code",
|
30 |
"source": [
|
@@ -91,21 +102,6 @@
|
|
91 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
92 |
"logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
|
93 |
"\n",
|
94 |
-
"f_add = torch.nn.quantized.FloatFunctional()\n",
|
95 |
-
"\n",
|
96 |
-
"\n",
|
97 |
-
"\n",
|
98 |
-
"\n"
|
99 |
-
],
|
100 |
-
"metadata": {
|
101 |
-
"id": "TC5lMJrS1HCC"
|
102 |
-
},
|
103 |
-
"execution_count": null,
|
104 |
-
"outputs": []
|
105 |
-
},
|
106 |
-
{
|
107 |
-
"cell_type": "code",
|
108 |
-
"source": [
|
109 |
"index = 0\n",
|
110 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
|
111 |
"vocab_encodings = torch.load('vocab_encodings.pt', weights_only=False)\n",
|
@@ -119,10 +115,11 @@
|
|
119 |
"for key in torch.load('reference_text_and_image_encodings.pt', weights_only=False):\n",
|
120 |
" index = index + 1;\n",
|
121 |
"#------#\n",
|
122 |
-
"NUM_REFERENCE_ITEMS = index"
|
|
|
123 |
],
|
124 |
"metadata": {
|
125 |
-
"id": "
|
126 |
},
|
127 |
"execution_count": null,
|
128 |
"outputs": []
|
@@ -132,7 +129,7 @@
|
|
132 |
"source": [
|
133 |
"# @title \t⚄ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
134 |
"# @markdown Choose a pre-encoded reference\n",
|
135 |
-
"index =
|
136 |
"PROMPT_INDEX = index\n",
|
137 |
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
|
138 |
"url = target_urls[f'{PROMPT_INDEX}']\n",
|
@@ -140,48 +137,73 @@
|
|
140 |
" image = Image.open(requests.get(url, stream=True).raw)\n",
|
141 |
"#------#\n",
|
142 |
"# @markdown ⚖️ 🖼️ encoding <-----?-----> 📝 encoding </div> <br>\n",
|
143 |
-
"C = 0.
|
144 |
-
"
|
145 |
-
"prompt_strength = math.pow(10 ,
|
146 |
-
"reference = torch.zeros(768)\n",
|
147 |
"\n",
|
148 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
|
149 |
"references = torch.load('reference_text_and_image_encodings.pt' , weights_only=False)\n",
|
150 |
-
"reference = torch.add(reference, C * references[index][0].dequantize())\n",
|
151 |
-
"reference = torch.add(reference, (1-C) * references[index][1].dequantize())\n",
|
152 |
-
"references = ''\n",
|
153 |
"# @markdown -----------\n",
|
154 |
-
"# @markdown 📝➕ Enhance similarity to prompt(s)\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
156 |
-
"
|
157 |
-
"pos_strength = math.pow(10 ,
|
158 |
-
"for _POS in POS.split(','):\n",
|
159 |
" inputs = tokenizer(text = _POS.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
160 |
-
" text_features_POS = model.get_text_features(**inputs)\n",
|
161 |
" text_features_POS = text_features_POS/text_features_POS.norm(p=2, dim=-1, keepdim=True)\n",
|
162 |
" reference = torch.add(reference, pos_strength * text_features_POS)\n",
|
163 |
"# @markdown -----------\n",
|
164 |
"\n",
|
165 |
"# @markdown 🚫 Penalize similarity to prompt(s)\n",
|
166 |
"NEG = '' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
|
167 |
-
"
|
168 |
-
"neg_strength = math.pow(10 ,
|
169 |
-
"for _NEG in NEG.split(','):\n",
|
170 |
" inputs = tokenizer(text = _NEG.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
171 |
-
" text_features_NEG = model.get_text_features(**inputs)\n",
|
172 |
" text_features_NEG = text_features_NEG/text_features_NEG.norm(p=2, dim=-1, keepdim=True)\n",
|
173 |
-
" reference = torch.
|
174 |
"# @markdown -----------\n",
|
175 |
"# @markdown ⏩ Skip item(s) containing the word(s)\n",
|
176 |
-
"SKIP = '
|
177 |
-
"
|
178 |
-
"
|
179 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
" for item in list(blacklist.split(',')):\n",
|
181 |
" if item.strip() == '' : continue\n",
|
182 |
" if txt.find(item.strip())> -1 : return True\n",
|
183 |
" #------#\n",
|
184 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
"# @markdown -----------\n",
|
186 |
"# @markdown 🔍 How similar should the results be?\n",
|
187 |
"list_size = 1000 # @param {type:'number'}\n",
|
@@ -191,46 +213,62 @@
|
|
191 |
"N = 7 # @param {type:\"slider\", min:0, max:20, step:1}\n",
|
192 |
"# @markdown -----------\n",
|
193 |
"# @markdown ⚙️ Run the script?\n",
|
194 |
-
"
|
195 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
"if (enable):\n",
|
197 |
" reference = reference/reference.norm(p=2, dim=-1, keepdim=True)\n",
|
198 |
" %cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
|
199 |
" sims = torch.matmul(vocab_encodings.dequantize(),reference.t())\n",
|
200 |
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
201 |
"\n",
|
202 |
-
"
|
203 |
-
"
|
204 |
-
"
|
205 |
-
"
|
206 |
-
"
|
207 |
-
"
|
208 |
-
"
|
209 |
-
"
|
210 |
-
"
|
211 |
-
"
|
212 |
-
"
|
213 |
-
"
|
214 |
-
"
|
215 |
-
"\n",
|
216 |
-
"
|
217 |
-
"
|
218 |
-
"\n",
|
219 |
-
"
|
220 |
-
"
|
|
|
|
|
221 |
" #--------#\n",
|
222 |
-
" variance = variance * (1/max(1, list_size))\n",
|
223 |
-
" variance= variance.clone().detach();\n",
|
224 |
-
" print(f'The variance for the selected range is {math.sqrt(variance.item())} units from average')\n",
|
225 |
"#---#\n",
|
226 |
-
"
|
227 |
-
"
|
228 |
-
"
|
229 |
-
"
|
230 |
-
"
|
231 |
-
"
|
232 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
"#-------#\n",
|
|
|
|
|
234 |
"image or print('No image found')"
|
235 |
],
|
236 |
"metadata": {
|
@@ -558,7 +596,8 @@
|
|
558 |
"!zip -r {zip_dest} {root_output_folder}"
|
559 |
],
|
560 |
"metadata": {
|
561 |
-
"id": "zivBNrw9uSVD"
|
|
|
562 |
},
|
563 |
"execution_count": null,
|
564 |
"outputs": []
|
@@ -566,44 +605,91 @@
|
|
566 |
{
|
567 |
"cell_type": "code",
|
568 |
"source": [
|
569 |
-
"\n",
|
570 |
"# @title \t⚄ New code (work in progress)\n",
|
571 |
"\n",
|
572 |
-
"
|
573 |
-
"
|
574 |
-
"
|
575 |
-
"\n",
|
576 |
-
"
|
577 |
-
"\n",
|
578 |
-
"def get_most_similiar_items_to(ref , url , num_items):\n",
|
579 |
-
" vocab = load_file(url)\n",
|
580 |
"\n",
|
581 |
-
" def similarity(item):\n",
|
582 |
-
" key = item[0]\n",
|
583 |
-
" value = item[1]\n",
|
584 |
-
" tmp = torch.sub(value[1:DIM+1] , torch.ones(DIM) , alpha = value[0].item()).to(dtype=torch.uint8)\n",
|
585 |
-
" return torch.dot(tmp,ref).item()\n",
|
586 |
-
" #--------#\n",
|
587 |
"\n",
|
588 |
-
"
|
589 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
590 |
"\n",
|
591 |
-
"
|
592 |
-
"ref = (1/SCALE) * ref/ref.norm(p=2, dim=-1, keepdim=True)\n",
|
593 |
-
"ref = torch.round(ref).to(dtype=torch.uint8)\n",
|
594 |
"\n",
|
595 |
-
"
|
596 |
-
"test = get_most_similiar_items_to(ref , url , LIST_SIZE)\n",
|
597 |
"\n",
|
598 |
"index = 0\n",
|
599 |
-
"
|
600 |
-
"
|
|
|
|
|
|
|
|
|
|
|
601 |
" index = index + 1\n",
|
602 |
-
" if index
|
603 |
-
"
|
604 |
],
|
605 |
"metadata": {
|
606 |
-
"
|
|
|
607 |
},
|
608 |
"execution_count": null,
|
609 |
"outputs": []
|
|
|
25 |
"id": "cRV2YWomjMBU"
|
26 |
}
|
27 |
},
|
28 |
+
{
|
29 |
+
"cell_type": "markdown",
|
30 |
+
"source": [
|
31 |
+
"THIS IS AN OLD VERSION OF THE CLIP INTERROGATOR.\n",
|
32 |
+
"\n",
|
33 |
+
"YOU WILL FIND THE UP TO DATE VERSION HERE:https://huggingface.co/datasets/codeShare/fusion-t2i-generator-data/tree/main/Google%20Colab%20Jupyter%20Notebooks"
|
34 |
+
],
|
35 |
+
"metadata": {
|
36 |
+
"id": "9slWHq0JIX6D"
|
37 |
+
}
|
38 |
+
},
|
39 |
{
|
40 |
"cell_type": "code",
|
41 |
"source": [
|
|
|
102 |
"model = CLIPModel.from_pretrained(\"openai/clip-vit-large-patch14\")\n",
|
103 |
"logit_scale = model.logit_scale.exp() #logit_scale = 100.00000762939453\n",
|
104 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
"index = 0\n",
|
106 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
|
107 |
"vocab_encodings = torch.load('vocab_encodings.pt', weights_only=False)\n",
|
|
|
115 |
"for key in torch.load('reference_text_and_image_encodings.pt', weights_only=False):\n",
|
116 |
" index = index + 1;\n",
|
117 |
"#------#\n",
|
118 |
+
"NUM_REFERENCE_ITEMS = index\n",
|
119 |
+
"\n"
|
120 |
],
|
121 |
"metadata": {
|
122 |
+
"id": "TC5lMJrS1HCC"
|
123 |
},
|
124 |
"execution_count": null,
|
125 |
"outputs": []
|
|
|
129 |
"source": [
|
130 |
"# @title \t⚄ Use a pre-encoded prompt + image pair from the fusion gen (note: NSFW!)\n",
|
131 |
"# @markdown Choose a pre-encoded reference\n",
|
132 |
+
"index = 213 # @param {type:\"slider\", min:0, max:1666, step:1}\n",
|
133 |
"PROMPT_INDEX = index\n",
|
134 |
"prompt = target_prompts[f'{PROMPT_INDEX}']\n",
|
135 |
"url = target_urls[f'{PROMPT_INDEX}']\n",
|
|
|
137 |
" image = Image.open(requests.get(url, stream=True).raw)\n",
|
138 |
"#------#\n",
|
139 |
"# @markdown ⚖️ 🖼️ encoding <-----?-----> 📝 encoding </div> <br>\n",
|
140 |
+
"C = 0.3 # @param {type:\"slider\", min:0, max:1, step:0.01}\n",
|
141 |
+
"log_strength_1 = 2.17 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
142 |
+
"prompt_strength = torch.tensor(math.pow(10 ,log_strength_1-1)).to(dtype = torch.float32)\n",
|
143 |
+
"reference = torch.zeros(768).to(dtype = torch.float32)\n",
|
144 |
"\n",
|
145 |
"%cd {home_directory + 'fusion-t2i-generator-data/' + 'reference'}\n",
|
146 |
"references = torch.load('reference_text_and_image_encodings.pt' , weights_only=False)\n",
|
147 |
+
"reference = torch.add(reference, prompt_strength * C * references[index][0].dequantize().to(dtype = torch.float32))\n",
|
148 |
+
"reference = torch.add(reference, prompt_strength * (1-C) * references[index][1].dequantize().to(dtype = torch.float32))\n",
|
149 |
+
"references = '' # Clear up memory\n",
|
150 |
"# @markdown -----------\n",
|
151 |
+
"# @markdown 📝➕ 1st Enhance similarity to prompt(s)\n",
|
152 |
+
"POS_2 = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
153 |
+
"log_strength_2 = 1.03 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
154 |
+
"pos_strength = torch.tensor(math.pow(10 ,log_strength_2-1)).to(dtype = torch.float32)\n",
|
155 |
+
"for _POS in POS_2.replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').split(','):\n",
|
156 |
+
" inputs = tokenizer(text = _POS.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
157 |
+
" text_features_POS = model.get_text_features(**inputs).to(dtype = torch.float32)\n",
|
158 |
+
" text_features_POS = text_features_POS/text_features_POS.norm(p=2, dim=-1, keepdim=True)\n",
|
159 |
+
" reference = torch.add(reference, pos_strength * text_features_POS)\n",
|
160 |
+
"# @markdown -----------\n",
|
161 |
+
"\n",
|
162 |
+
"# @markdown -----------\n",
|
163 |
+
"# @markdown 📝➕ 2nd Enhance similarity to prompt(s)\n",
|
164 |
"POS = '' # @param {type:'string' ,placeholder:'item1 , item2 , ...'}\n",
|
165 |
+
"log_strength_3 = 1.06 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
166 |
+
"pos_strength = torch.tensor(math.pow(10 ,log_strength_3-1)).to(dtype = torch.float32)\n",
|
167 |
+
"for _POS in POS.replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').split(','):\n",
|
168 |
" inputs = tokenizer(text = _POS.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
169 |
+
" text_features_POS = model.get_text_features(**inputs).to(dtype = torch.float32)\n",
|
170 |
" text_features_POS = text_features_POS/text_features_POS.norm(p=2, dim=-1, keepdim=True)\n",
|
171 |
" reference = torch.add(reference, pos_strength * text_features_POS)\n",
|
172 |
"# @markdown -----------\n",
|
173 |
"\n",
|
174 |
"# @markdown 🚫 Penalize similarity to prompt(s)\n",
|
175 |
"NEG = '' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
|
176 |
+
"log_strength_4 = 1 # @param {type:\"slider\", min:-5, max:5, step:0.01}\n",
|
177 |
+
"neg_strength = torch.tensor(math.pow(10 ,log_strength_4-1)).to(dtype = torch.float32)\n",
|
178 |
+
"for _NEG in NEG.replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').split(','):\n",
|
179 |
" inputs = tokenizer(text = _NEG.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
180 |
+
" text_features_NEG = model.get_text_features(**inputs).to(dtype = torch.float32)\n",
|
181 |
" text_features_NEG = text_features_NEG/text_features_NEG.norm(p=2, dim=-1, keepdim=True)\n",
|
182 |
+
" reference = torch.sub(reference, neg_strength * text_features_NEG)\n",
|
183 |
"# @markdown -----------\n",
|
184 |
"# @markdown ⏩ Skip item(s) containing the word(s)\n",
|
185 |
+
"SKIP = '' # @param {type:'string' , placeholder:'item1 , item2 , ...'}\n",
|
186 |
+
"\n",
|
187 |
+
"min_wordcount = 0 # @param {type:\"slider\", min:0, max:20, step:1}\n",
|
188 |
+
"\n",
|
189 |
+
"def isBlacklisted(_txt, _blacklist):\n",
|
190 |
+
" blacklist = _blacklist.lower().replace('</w>' , ' ').replace('{' , '').replace('}' , '').replace('|' , ',').strip()\n",
|
191 |
+
" txt = _txt.lower().strip()\n",
|
192 |
+
" if len(txt)<min_wordcount: return True\n",
|
193 |
+
" if txt.isnumeric(): return True\n",
|
194 |
+
" if blacklist == '': return False\n",
|
195 |
" for item in list(blacklist.split(',')):\n",
|
196 |
" if item.strip() == '' : continue\n",
|
197 |
" if txt.find(item.strip())> -1 : return True\n",
|
198 |
" #------#\n",
|
199 |
+
" found = False\n",
|
200 |
+
" alphabet = 'abcdefghijklmnopqrstuvxyz'\n",
|
201 |
+
" for letter in alphabet:\n",
|
202 |
+
" found = txt.find(letter)>-1\n",
|
203 |
+
" if found:break\n",
|
204 |
+
" #------#\n",
|
205 |
+
" return not found\n",
|
206 |
+
"\n",
|
207 |
"# @markdown -----------\n",
|
208 |
"# @markdown 🔍 How similar should the results be?\n",
|
209 |
"list_size = 1000 # @param {type:'number'}\n",
|
|
|
213 |
"N = 7 # @param {type:\"slider\", min:0, max:20, step:1}\n",
|
214 |
"# @markdown -----------\n",
|
215 |
"# @markdown ⚙️ Run the script?\n",
|
216 |
+
"update_list = True # @param {type:\"boolean\"}\n",
|
217 |
+
"\n",
|
218 |
+
"calculate_variance = False # @param {type:\"boolean\"}\n",
|
219 |
+
"\n",
|
220 |
+
"ne = update_list\n",
|
221 |
+
"\n",
|
222 |
+
"try: first\n",
|
223 |
+
"except:\n",
|
224 |
+
" enable = True\n",
|
225 |
+
" first = True\n",
|
226 |
+
"\n",
|
227 |
"if (enable):\n",
|
228 |
" reference = reference/reference.norm(p=2, dim=-1, keepdim=True)\n",
|
229 |
" %cd {home_directory + 'fusion-t2i-generator-data/' + 'vocab'}\n",
|
230 |
" sims = torch.matmul(vocab_encodings.dequantize(),reference.t())\n",
|
231 |
" sorted , indices = torch.sort(sims,dim=0 , descending=True)\n",
|
232 |
"\n",
|
233 |
+
" if calculate_variance:\n",
|
234 |
+
" average = torch.zeros(768)\n",
|
235 |
+
" for key in range(NUM_VOCAB_ITEMS):\n",
|
236 |
+
" if (key>=start_at_index and key < start_at_index + list_size):\n",
|
237 |
+
" average = torch.add(average, vocab_encodings[key].dequantize())\n",
|
238 |
+
" if (key>=start_at_index + list_size) : break\n",
|
239 |
+
" average = average * (1/max(1, list_size))\n",
|
240 |
+
" average = average/average.norm(p=2, dim=-1, keepdim=True)\n",
|
241 |
+
" average = average.clone().detach();\n",
|
242 |
+
" variance = torch.zeros(1)\n",
|
243 |
+
" for key in range(NUM_VOCAB_ITEMS):\n",
|
244 |
+
" if (key>=start_at_index and key < start_at_index + list_size):\n",
|
245 |
+
" #dot product\n",
|
246 |
+
" difference_to_average = 100 * (torch.ones(1) - torch.dot(average[0]\n",
|
247 |
+
" , vocab_encodings[key].dequantize()[0])/average.norm(p=2, dim=-1, keepdim=True))\n",
|
248 |
+
" variance = torch.add(variance, difference_to_average * difference_to_average)\n",
|
249 |
+
" if (key>=start_at_index + list_size) : break\n",
|
250 |
+
" #--------#\n",
|
251 |
+
" variance = variance * (1/max(1, list_size))\n",
|
252 |
+
" variance= variance.clone().detach();\n",
|
253 |
+
" print(f'The variance for the selected range is {math.sqrt(variance.item())} units from average')\n",
|
254 |
" #--------#\n",
|
|
|
|
|
|
|
255 |
"#---#\n",
|
256 |
+
"output = '{'\n",
|
257 |
+
"for _index in range(list_size):\n",
|
258 |
+
" tmp = prompts[f'{indices[min(_index+start_at_index,NUM_VOCAB_ITEMS-1)].item()}']\n",
|
259 |
+
" if isBlacklisted(tmp , SKIP): continue\n",
|
260 |
+
" tmp = fix_bad_symbols(tmp)\n",
|
261 |
+
" if output.find(tmp)>-1:continue\n",
|
262 |
+
" output = output + tmp + '|'\n",
|
263 |
+
"#---------#\n",
|
264 |
+
"output = (output + '}').replace('|}' , '} ')\n",
|
265 |
+
"print('')\n",
|
266 |
+
"print('')\n",
|
267 |
+
"for iter in range(N):\n",
|
268 |
+
" print(output)\n",
|
269 |
"#-------#\n",
|
270 |
+
"print('')\n",
|
271 |
+
"print('')\n",
|
272 |
"image or print('No image found')"
|
273 |
],
|
274 |
"metadata": {
|
|
|
596 |
"!zip -r {zip_dest} {root_output_folder}"
|
597 |
],
|
598 |
"metadata": {
|
599 |
+
"id": "zivBNrw9uSVD",
|
600 |
+
"cellView": "form"
|
601 |
},
|
602 |
"execution_count": null,
|
603 |
"outputs": []
|
|
|
605 |
{
|
606 |
"cell_type": "code",
|
607 |
"source": [
|
|
|
608 |
"# @title \t⚄ New code (work in progress)\n",
|
609 |
"\n",
|
610 |
+
"def get_num_vocab_items(_url):\n",
|
611 |
+
" num_vocab_items = 0\n",
|
612 |
+
" for item in _url.split('_'):\n",
|
613 |
+
" if item.find('safetensors')>-1: num_vocab_items = int(item.replace('.safetensors', ''))\n",
|
614 |
+
" #------#\n",
|
615 |
+
" return num_vocab_items-1\n",
|
|
|
|
|
616 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
617 |
"\n",
|
618 |
+
"def get_similiar(_ref , urls, _LIST_SIZE):\n",
|
619 |
+
" dot_dtype = torch.float16\n",
|
620 |
+
" _SCALE = torch.tensor(0.0043).to(dot_dtype)\n",
|
621 |
+
" _DIM = 768\n",
|
622 |
+
" _vocab = {}\n",
|
623 |
+
" #----#\n",
|
624 |
+
" inputs = tokenizer(text = _ref.strip(), truncation = True , padding=True, return_tensors=\"pt\")\n",
|
625 |
+
" ref = model.get_text_features(**inputs)[0]\n",
|
626 |
+
" ref = (ref/ref.norm(p=2, dim=-1, keepdim=True)).to(dtype = dot_dtype)\n",
|
627 |
+
" #-----#\n",
|
628 |
+
" num_vocab_items = 0\n",
|
629 |
+
" for url in urls:\n",
|
630 |
+
" num_vocab_items = num_vocab_items + get_num_vocab_items(url)\n",
|
631 |
+
" #------#\n",
|
632 |
+
" vocab = torch.zeros(num_vocab_items , _DIM).to(torch.uint8)\n",
|
633 |
+
" prompts = {}\n",
|
634 |
+
" index = 0\n",
|
635 |
+
" for url in urls:\n",
|
636 |
+
" __vocab = load_file(url)\n",
|
637 |
+
" for key in load_file(url):\n",
|
638 |
+
" vocab[index] = __vocab[key][1:_DIM+1] - __vocab[key][0]*torch.ones(_DIM).t()\n",
|
639 |
+
" prompts[f'{index}'] = key\n",
|
640 |
+
" index = index + 1\n",
|
641 |
+
" #-------#\n",
|
642 |
+
" __vocab = {}\n",
|
643 |
+
" #-------#\n",
|
644 |
+
" sims = torch.matmul((vocab*_SCALE).to(dot_dtype) , ref.t())\n",
|
645 |
+
" sorted , indices = torch.sort(sims, dim = 0 , descending = True)\n",
|
646 |
+
" return indices , prompts , sims\n",
|
647 |
+
" _prompts = {}\n",
|
648 |
+
" for index in range(num_vocab_items):\n",
|
649 |
+
" key = prompts[f'{indices[index]}']\n",
|
650 |
+
" _prompts[f'{key}'] = sims[key].item()\n",
|
651 |
+
" index = index + 1\n",
|
652 |
+
" if index>_LIST_SIZE:break\n",
|
653 |
+
" #-------#\n",
|
654 |
+
" return _prompts\n",
|
655 |
+
"#-------#\n",
|
656 |
+
"\n"
|
657 |
+
],
|
658 |
+
"metadata": {
|
659 |
+
"cellView": "form",
|
660 |
+
"id": "uDzsk02CbMFc"
|
661 |
+
},
|
662 |
+
"execution_count": null,
|
663 |
+
"outputs": []
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"cell_type": "code",
|
667 |
+
"source": [
|
668 |
+
"vocab = {}\n",
|
669 |
+
"# @title \t⚄ New code (work in progress)\n",
|
670 |
+
"ref = 'impressionist painting by luis royo' # @param {type:'string' , placeholder:'type a single prompt to match'}\n",
|
671 |
+
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
672 |
+
"urls = [ '/content/fusion-t2i-generator-data/civitai_vocab_q0043_203663.safetensors' ,]\n",
|
673 |
"\n",
|
674 |
+
" #'/content/fusion-t2i-generator-data/clip_vocab_q0043_541291.safetensors' , '/content/fusion-t2i-generator-data/lyrics_vocab_q0043_41905.safetensors' , '/content/fusion-t2i-generator-data/names_vocab_q0043_162977.safetensors' , '/content/fusion-t2i-generator-data/r34_vocab_q0043_96166.safetensors' ]\n",
|
|
|
|
|
675 |
"\n",
|
676 |
+
"indices , prompts , sims = get_similiar(ref , urls , LIST_SIZE)\n",
|
|
|
677 |
"\n",
|
678 |
"index = 0\n",
|
679 |
+
"_prompts = {}\n",
|
680 |
+
"for index in range(203662):\n",
|
681 |
+
" try:\n",
|
682 |
+
" key = prompts[f'{indices[index].item()}']\n",
|
683 |
+
" print(key)\n",
|
684 |
+
" except: print('Not found!')\n",
|
685 |
+
" #_prompts[f'{key}'] = sims[key].item()\n",
|
686 |
" index = index + 1\n",
|
687 |
+
" if index>LIST_SIZE:break\n",
|
688 |
+
"\n"
|
689 |
],
|
690 |
"metadata": {
|
691 |
+
"cellView": "form",
|
692 |
+
"id": "Azz1kCza6LB3"
|
693 |
},
|
694 |
"execution_count": null,
|
695 |
"outputs": []
|