Upload fusion_t2i_CLIP_interrogator.ipynb
Browse files
Google Colab Jupyter Notebooks/fusion_t2i_CLIP_interrogator.ipynb
CHANGED
@@ -130,7 +130,7 @@
|
|
130 |
"height": 889
|
131 |
}
|
132 |
},
|
133 |
-
"execution_count":
|
134 |
"outputs": [
|
135 |
{
|
136 |
"output_type": "stream",
|
@@ -225,7 +225,7 @@
|
|
225 |
"source": [
|
226 |
"# @title ⚄ Set range\n",
|
227 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
228 |
-
"START_AT =
|
229 |
"# @markdown -----\n",
|
230 |
"# @markdown Select vocab\n",
|
231 |
"general = True # @param {type:\"boolean\"}\n",
|
@@ -323,9 +323,19 @@
|
|
323 |
" for key,value in data:\n",
|
324 |
" prompts[key] = value\n",
|
325 |
" num_items = int(prompts['num_items'])\n",
|
|
|
326 |
" #------#\n",
|
327 |
" try:vocab_loaded\n",
|
328 |
-
" except
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
" if vocab_loaded != vocab_to_load and not multi:\n",
|
330 |
" %cd {encodings_folder}\n",
|
331 |
" _text_encodings = load_file(f'{root_filename}.safetensors')['weights'].to(torch.uint8)\n",
|
@@ -337,12 +347,12 @@
|
|
337 |
" #------#\n",
|
338 |
" sims = torch.matmul(text_encodings*scale, ref.t())\n",
|
339 |
" sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
|
340 |
-
"\n",
|
341 |
" #-----#\n",
|
342 |
" for index in range(LIST_SIZE + START_AT):\n",
|
343 |
" if index<START_AT: continue\n",
|
344 |
" key = indices[index].item()\n",
|
345 |
-
" prompt = prompts[f'{key}']\n",
|
|
|
346 |
" if(isBlacklisted(prompt)):continue\n",
|
347 |
" #-------#\n",
|
348 |
" similiar_sims[_index] = torch.tensor(round(sims[key].item(), 5))\n",
|
@@ -383,11 +393,11 @@
|
|
383 |
" for index in range(LIST_SIZE):\n",
|
384 |
" key = indices[index].item()\n",
|
385 |
" sim = similiar_sims[key].item()\n",
|
386 |
-
" prompt = prompt + similiar_prompts[f'{key}'] + '|'\n",
|
387 |
" #-----#\n",
|
388 |
" prompt = (prompt + '}').replace('|}', '} ')\n",
|
389 |
" #------#\n",
|
390 |
-
" print(f'\\n\\n{prompt}\\n\\n')\n",
|
391 |
"#-----#\n"
|
392 |
],
|
393 |
"metadata": {
|
@@ -397,7 +407,7 @@
|
|
397 |
"base_uri": "https://localhost:8080/"
|
398 |
}
|
399 |
},
|
400 |
-
"execution_count":
|
401 |
"outputs": [
|
402 |
{
|
403 |
"output_type": "stream",
|
|
|
130 |
"height": 889
|
131 |
}
|
132 |
},
|
133 |
+
"execution_count": null,
|
134 |
"outputs": [
|
135 |
{
|
136 |
"output_type": "stream",
|
|
|
225 |
"source": [
|
226 |
"# @title ⚄ Set range\n",
|
227 |
"LIST_SIZE = 1000 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
228 |
+
"START_AT = 0 # @param {type:'number' , placeholder:'set how large the list should be'}\n",
|
229 |
"# @markdown -----\n",
|
230 |
"# @markdown Select vocab\n",
|
231 |
"general = True # @param {type:\"boolean\"}\n",
|
|
|
323 |
" for key,value in data:\n",
|
324 |
" prompts[key] = value\n",
|
325 |
" num_items = int(prompts['num_items'])\n",
|
326 |
+
"\n",
|
327 |
" #------#\n",
|
328 |
" try:vocab_loaded\n",
|
329 |
+
" except:\n",
|
330 |
+
" vocab_loaded = 'general'\n",
|
331 |
+
" _text_encodings = load_file(f'{root_filename}.safetensors')['weights'].to(torch.uint8)\n",
|
332 |
+
" text_encodings = torch.zeros(num_items , dim)\n",
|
333 |
+
" tmp = torch.ones(dim).to(dot_dtype)\n",
|
334 |
+
" for index in range(num_items):\n",
|
335 |
+
" text_encodings[index] = torch.sub(_text_encodings[index][1:dim+1].to(dot_dtype) , tmp , alpha= _text_encodings[index][0].to(dot_dtype))\n",
|
336 |
+
" vocab_loaded = vocab_to_load\n",
|
337 |
+
" #-----#\n",
|
338 |
+
"\n",
|
339 |
" if vocab_loaded != vocab_to_load and not multi:\n",
|
340 |
" %cd {encodings_folder}\n",
|
341 |
" _text_encodings = load_file(f'{root_filename}.safetensors')['weights'].to(torch.uint8)\n",
|
|
|
347 |
" #------#\n",
|
348 |
" sims = torch.matmul(text_encodings*scale, ref.t())\n",
|
349 |
" sorted , indices = torch.sort(sims , dim=0 , descending = True)\n",
|
|
|
350 |
" #-----#\n",
|
351 |
" for index in range(LIST_SIZE + START_AT):\n",
|
352 |
" if index<START_AT: continue\n",
|
353 |
" key = indices[index].item()\n",
|
354 |
+
" try:prompt = prompts[f'{key}']\n",
|
355 |
+
" except:continue\n",
|
356 |
" if(isBlacklisted(prompt)):continue\n",
|
357 |
" #-------#\n",
|
358 |
" similiar_sims[_index] = torch.tensor(round(sims[key].item(), 5))\n",
|
|
|
393 |
" for index in range(LIST_SIZE):\n",
|
394 |
" key = indices[index].item()\n",
|
395 |
" sim = similiar_sims[key].item()\n",
|
396 |
+
" prompt = prompt + fix_bad_symbols(similiar_prompts[f'{key}']) + '|'\n",
|
397 |
" #-----#\n",
|
398 |
" prompt = (prompt + '}').replace('|}', '} ')\n",
|
399 |
" #------#\n",
|
400 |
+
" print(f'\\n\\n {prompt} \\n\\n')\n",
|
401 |
"#-----#\n"
|
402 |
],
|
403 |
"metadata": {
|
|
|
407 |
"base_uri": "https://localhost:8080/"
|
408 |
}
|
409 |
},
|
410 |
+
"execution_count": null,
|
411 |
"outputs": [
|
412 |
{
|
413 |
"output_type": "stream",
|