增加两种训练变体,数据增强 与 后门攻击
Browse files- Image/AlexNet/code/train.py +27 -29
- Image/DenseNet/code/train.py +45 -17
- Image/EfficientNet/code/train.py +45 -17
- Image/GoogLeNet/code/train.py +43 -15
- Image/LeNet5/code/train.py +43 -15
- Image/MobileNetv1/code/train.py +45 -17
- Image/MobileNetv2/code/train.py +45 -17
- Image/MobileNetv3/code/train.py +45 -17
- Image/ResNet/code/train.py +45 -17
- Image/SENet/code/train.py +45 -17
- Image/ShuffleNet/code/train.py +43 -15
- Image/ShuffleNetv2/code/train.py +45 -17
- Image/SwinTransformer/code/train.py +44 -30
- Image/VGG/code/train.py +44 -19
- Image/ViT/code/train.py +44 -28
- Image/ZFNet/code/train.py +43 -15
- Image/utils/parse_args.py +18 -0
- Image/utils/train_utils.py +180 -6
Image/AlexNet/code/train.py
CHANGED
@@ -1,41 +1,39 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
-
import argparse
|
4 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
5 |
-
|
6 |
from utils.dataset_utils import get_cifar10_dataloaders
|
7 |
-
from utils.train_utils import train_model
|
|
|
8 |
from model import AlexNet
|
|
|
9 |
|
10 |
-
def
|
11 |
-
parser = argparse.ArgumentParser(description='训练AlexNet模型')
|
12 |
-
parser.add_argument('--gpu', type=int, default=0, help='GPU设备编号 (0,1,2,3)')
|
13 |
-
parser.add_argument('--batch-size', type=int, default=128, help='批次大小')
|
14 |
-
parser.add_argument('--epochs', type=int, default=200, help='训练轮数')
|
15 |
-
parser.add_argument('--lr', type=float, default=0.1, help='学习率')
|
16 |
-
return parser.parse_args()
|
17 |
-
|
18 |
-
def main():
|
19 |
# 解析命令行参数
|
20 |
args = parse_args()
|
21 |
-
|
22 |
-
# 获取数据加载器
|
23 |
-
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
24 |
-
|
25 |
# 创建模型
|
26 |
model = AlexNet()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
train_model(
|
30 |
-
model=model,
|
31 |
-
trainloader=trainloader,
|
32 |
-
testloader=testloader,
|
33 |
-
epochs=args.epochs,
|
34 |
-
lr=args.lr,
|
35 |
-
device=f'cuda:{args.gpu}',
|
36 |
-
save_dir='../model',
|
37 |
-
model_name='alexnet'
|
38 |
-
)
|
39 |
-
|
40 |
-
if __name__ == '__main__':
|
41 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
|
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
from model import AlexNet
|
8 |
+
#args.train_type #0 for normal train, 1 for data aug train,2 for back door train
|
9 |
|
10 |
+
def main(train_type):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# 解析命令行参数
|
12 |
args = parse_args()
|
|
|
|
|
|
|
|
|
13 |
# 创建模型
|
14 |
model = AlexNet()
|
15 |
+
if args.train_type == '0':
|
16 |
+
# 获取数据加载器
|
17 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
18 |
+
# 训练模型
|
19 |
+
train_model(
|
20 |
+
model=model,
|
21 |
+
trainloader=trainloader,
|
22 |
+
testloader=testloader,
|
23 |
+
epochs=args.epochs,
|
24 |
+
lr=args.lr,
|
25 |
+
device=f'cuda:{args.gpu}',
|
26 |
+
save_dir='../model',
|
27 |
+
model_name='alexnet'
|
28 |
+
)
|
29 |
+
elif args.train_type == '1':
|
30 |
+
train_model_data_augmentation(model, epochs=args.epochs, lr=args.lr, device=f'cuda:{args.gpu}',
|
31 |
+
save_dir='../model', model_name='alexnet',
|
32 |
+
batch_size=args.batch_size, num_workers=args.num_workers)
|
33 |
+
elif args.train_type == '2':
|
34 |
+
train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=args.epochs, lr=args.lr,
|
35 |
+
device=f'cuda:{args.gpu}', save_dir='../model', model_name='alexnet',
|
36 |
+
batch_size=args.batch_size, num_workers=args.num_workers)
|
37 |
|
38 |
+
if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
main()
|
Image/DenseNet/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
7 |
-
from
|
|
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
-
model =
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
+
from model import DenseNet
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = DenseNet()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='densenet',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='densenet',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='densenet',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/EfficientNet/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
7 |
-
from
|
|
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
-
model =
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
+
from model import EfficientNet
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = EfficientNet()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='efficientnet',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='efficientnet',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='efficientnet',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/GoogLeNet/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
|
|
7 |
from model import GoogLeNet
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
model = GoogLeNet()
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
from model import GoogLeNet
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
model = GoogLeNet()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='googlenet',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='googlenet',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='googlenet',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/LeNet5/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
|
|
7 |
from model import LeNet5
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
model = LeNet5()
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
from model import LeNet5
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
model = LeNet5()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='lenet5',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='lenet5',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='lenet5',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/MobileNetv1/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
7 |
-
from
|
|
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
-
model =
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
+
from model import MobileNetv1
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = MobileNetv1()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='mobilenetv1',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='mobilenetv1',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='mobilenetv1',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/MobileNetv2/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
7 |
-
from
|
|
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
-
model =
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
+
from model import MobileNetv2
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = MobileNetv2()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='mobilenetv2',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='mobilenetv2',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='mobilenetv2',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/MobileNetv3/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
7 |
-
from
|
|
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
-
model =
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
+
from model import MobileNetv3
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = MobileNetv3()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='mobilenetv3',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='mobilenetv3',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='mobilenetv3',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/ResNet/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
7 |
-
from
|
|
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
-
model =
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
+
from model import ResNet
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = ResNet()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='resnet',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='resnet',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='resnet',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/SENet/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
7 |
-
from
|
|
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
-
model =
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
+
from model import SENet
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = SENet()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='senet',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='senet',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='senet',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/ShuffleNet/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
|
|
7 |
from model import ShuffleNet
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
model = ShuffleNet()
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
from model import ShuffleNet
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
model = ShuffleNet()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='shufflenet',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='shufflenet',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='shufflenet',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/ShuffleNetv2/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
7 |
-
from
|
|
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
-
model =
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
+
from model import ShuffleNetv2
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = ShuffleNetv2()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='shufflenetv2',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='shufflenetv2',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='shufflenetv2',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/SwinTransformer/code/train.py
CHANGED
@@ -1,43 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
|
|
7 |
from model import SwinTransformer
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
-
model = SwinTransformer(
|
15 |
-
img_size=32,
|
16 |
-
patch_size=4,
|
17 |
-
in_chans=3,
|
18 |
-
num_classes=10,
|
19 |
-
embed_dim=96,
|
20 |
-
depths=[2, 2, 6, 2],
|
21 |
-
num_heads=[3, 6, 12, 24],
|
22 |
-
window_size=7,
|
23 |
-
mlp_ratio=4.,
|
24 |
-
qkv_bias=True,
|
25 |
-
drop_rate=0.0,
|
26 |
-
attn_drop_rate=0.0,
|
27 |
-
drop_path_rate=0.1
|
28 |
-
)
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
if __name__ == '__main__':
|
43 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
from model import SwinTransformer
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = SwinTransformer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='swintransformer',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='swintransformer',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='swintransformer',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/VGG/code/train.py
CHANGED
@@ -1,32 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
|
|
7 |
from model import VGG
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
-
|
15 |
-
'VGG16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']
|
16 |
-
}
|
17 |
-
model = VGG('VGG16')
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
if __name__ == '__main__':
|
32 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
from model import VGG
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = VGG()
|
|
|
|
|
|
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='vgg',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='vgg',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='vgg',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/ViT/code/train.py
CHANGED
@@ -1,41 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
|
|
7 |
from model import ViT
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
-
model = ViT(
|
15 |
-
img_size=32,
|
16 |
-
patch_size=4,
|
17 |
-
in_chans=3,
|
18 |
-
n_classes=10,
|
19 |
-
embed_dim=96,
|
20 |
-
depth=12,
|
21 |
-
n_heads=8,
|
22 |
-
mlp_ratio=4.,
|
23 |
-
qkv_bias=True,
|
24 |
-
p=0.1,
|
25 |
-
attn_p=0.1,
|
26 |
-
)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
if __name__ == '__main__':
|
41 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
from model import ViT
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
+
model = ViT()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='vit',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='vit',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='vit',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/ZFNet/code/train.py
CHANGED
@@ -1,29 +1,57 @@
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
4 |
-
|
5 |
from utils.dataset_utils import get_cifar10_dataloaders
|
6 |
-
from utils.train_utils import train_model
|
|
|
7 |
from model import ZFNet
|
8 |
|
9 |
def main():
|
10 |
-
#
|
11 |
-
|
12 |
|
13 |
# 创建模型
|
14 |
model = ZFNet()
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
if __name__ == '__main__':
|
29 |
main()
|
|
|
1 |
import sys
|
2 |
import os
|
3 |
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
|
4 |
from utils.dataset_utils import get_cifar10_dataloaders
|
5 |
+
from utils.train_utils import train_model, train_model_data_augmentation, train_model_backdoor
|
6 |
+
from utils.parse_args import parse_args
|
7 |
from model import ZFNet
|
8 |
|
9 |
def main():
|
10 |
+
# 解析命令行参数
|
11 |
+
args = parse_args()
|
12 |
|
13 |
# 创建模型
|
14 |
model = ZFNet()
|
15 |
|
16 |
+
if args.train_type == '0':
|
17 |
+
# 获取数据加载器
|
18 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
|
19 |
+
# 训练模型
|
20 |
+
train_model(
|
21 |
+
model=model,
|
22 |
+
trainloader=trainloader,
|
23 |
+
testloader=testloader,
|
24 |
+
epochs=args.epochs,
|
25 |
+
lr=args.lr,
|
26 |
+
device=f'cuda:{args.gpu}',
|
27 |
+
save_dir='../model',
|
28 |
+
model_name='zfnet',
|
29 |
+
save_type='0'
|
30 |
+
)
|
31 |
+
elif args.train_type == '1':
|
32 |
+
train_model_data_augmentation(
|
33 |
+
model,
|
34 |
+
epochs=args.epochs,
|
35 |
+
lr=args.lr,
|
36 |
+
device=f'cuda:{args.gpu}',
|
37 |
+
save_dir='../model',
|
38 |
+
model_name='zfnet',
|
39 |
+
batch_size=args.batch_size,
|
40 |
+
num_workers=args.num_workers
|
41 |
+
)
|
42 |
+
elif args.train_type == '2':
|
43 |
+
train_model_backdoor(
|
44 |
+
model,
|
45 |
+
poison_ratio=args.poison_ratio,
|
46 |
+
target_label=args.target_label,
|
47 |
+
epochs=args.epochs,
|
48 |
+
lr=args.lr,
|
49 |
+
device=f'cuda:{args.gpu}',
|
50 |
+
save_dir='../model',
|
51 |
+
model_name='zfnet',
|
52 |
+
batch_size=args.batch_size,
|
53 |
+
num_workers=args.num_workers
|
54 |
+
)
|
55 |
|
56 |
if __name__ == '__main__':
|
57 |
main()
|
Image/utils/parse_args.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
|
3 |
+
def parse_args():
|
4 |
+
"""解析命令行参数
|
5 |
+
|
6 |
+
Returns:
|
7 |
+
args: 解析后的参数
|
8 |
+
"""
|
9 |
+
parser = argparse.ArgumentParser(description='训练模型')
|
10 |
+
parser.add_argument('--gpu', type=int, default=0, help='GPU设备编号 (0,1,2,3)')
|
11 |
+
parser.add_argument('--batch-size', type=int, default=128, help='批次大小')
|
12 |
+
parser.add_argument('--epochs', type=int, default=200, help='训练轮数')
|
13 |
+
parser.add_argument('--lr', type=float, default=0.1, help='学习率')
|
14 |
+
parser.add_argument('--num-workers', type=int, default=2, help='数据加载的工作进程数')
|
15 |
+
parser.add_argument('--poison-ratio', type=float, default=0.1, help='恶意样本比例')
|
16 |
+
parser.add_argument('--target-label', type=int, default=0, help='目标类别')
|
17 |
+
parser.add_argument('--train-type',type=str,choices=['0','1','2'],default='0',help='训练类型:0 for normal train, 1 for data aug train,2 for back door train')
|
18 |
+
return parser.parse_args()
|
Image/utils/train_utils.py
CHANGED
@@ -135,7 +135,7 @@ def collect_embeddings(model, dataloader, device):
|
|
135 |
return np.array([]), indices
|
136 |
|
137 |
def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda:0',
|
138 |
-
save_dir='./checkpoints', model_name='model'):
|
139 |
"""通用的模型训练函数
|
140 |
Args:
|
141 |
model: 要训练的模型
|
@@ -161,16 +161,30 @@ def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda
|
|
161 |
print(f"GPU {gpu_id} 不可用,将使用GPU 0")
|
162 |
device = 'cuda:0'
|
163 |
|
164 |
-
# 设置保存目录
|
165 |
if not os.path.exists(save_dir):
|
166 |
os.makedirs(save_dir)
|
167 |
|
168 |
-
# 设置日志
|
169 |
-
|
170 |
-
|
171 |
-
os.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
logger = setup_logger(log_file)
|
173 |
|
|
|
|
|
|
|
|
|
|
|
174 |
# 损失函数和优化器
|
175 |
criterion = nn.CrossEntropyLoss()
|
176 |
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
|
@@ -281,3 +295,163 @@ def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda
|
|
281 |
total_time = time.time() - start_time
|
282 |
logger.info(f'训练完成! 总用时: {total_time/3600:.2f}小时')
|
283 |
logger.info(f'最佳测试精度: {best_acc:.2f}%')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
return np.array([]), indices
|
136 |
|
137 |
def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda:0',
|
138 |
+
save_dir='./checkpoints', model_name='model',save_type='0'):
|
139 |
"""通用的模型训练函数
|
140 |
Args:
|
141 |
model: 要训练的模型
|
|
|
161 |
print(f"GPU {gpu_id} 不可用,将使用GPU 0")
|
162 |
device = 'cuda:0'
|
163 |
|
164 |
+
# 设置保存目录 0 for normal train, 1 for data aug train,2 for back door train
|
165 |
if not os.path.exists(save_dir):
|
166 |
os.makedirs(save_dir)
|
167 |
|
168 |
+
# 设置日志 0 for normal train, 1 for data aug train,2 for back door train
|
169 |
+
if save_type == '0':
|
170 |
+
log_file = os.path.join(os.path.dirname(save_dir), 'code', 'train.log')
|
171 |
+
if not os.path.exists(os.path.dirname(log_file)):
|
172 |
+
os.makedirs(os.path.dirname(log_file))
|
173 |
+
elif save_type == '1':
|
174 |
+
log_file = os.path.join(os.path.dirname(save_dir), 'code', 'data_aug_train.log')
|
175 |
+
if not os.path.exists(os.path.dirname(log_file)):
|
176 |
+
os.makedirs(os.path.dirname(log_file))
|
177 |
+
elif save_type == '2':
|
178 |
+
log_file = os.path.join(os.path.dirname(save_dir), 'code', 'backdoor_train.log')
|
179 |
+
if not os.path.exists(os.path.dirname(log_file)):
|
180 |
+
os.makedirs(os.path.dirname(log_file))
|
181 |
logger = setup_logger(log_file)
|
182 |
|
183 |
+
# 设置epoch保存目录 0 for normal train, 1 for data aug train,2 for back door train
|
184 |
+
save_dir = os.path.join(save_dir, save_type)
|
185 |
+
if not os.path.exists(save_dir):
|
186 |
+
os.makedirs(save_dir)
|
187 |
+
|
188 |
# 损失函数和优化器
|
189 |
criterion = nn.CrossEntropyLoss()
|
190 |
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=5e-4)
|
|
|
295 |
total_time = time.time() - start_time
|
296 |
logger.info(f'训练完成! 总用时: {total_time/3600:.2f}小时')
|
297 |
logger.info(f'最佳测试精度: {best_acc:.2f}%')
|
298 |
+
|
299 |
+
def train_model_data_augmentation(model, epochs=200, lr=0.1, device='cuda:0',
|
300 |
+
save_dir='./checkpoints', model_name='model_augmented',
|
301 |
+
batch_size=128, num_workers=2):
|
302 |
+
"""使用数据增强训练模型
|
303 |
+
|
304 |
+
数据增强方案说明:
|
305 |
+
1. RandomCrop: 随机裁剪,先填充4像素,再裁剪回原始大小,增加位置多样性
|
306 |
+
2. RandomHorizontalFlip: 随机水平翻转,增加方向多样性
|
307 |
+
3. RandomRotation: 随机旋转15度,增加角度多样性
|
308 |
+
4. ColorJitter: 颜色抖动,调整亮度、对比度、饱和度和色调
|
309 |
+
5. RandomErasing: 随机擦除部分区域,模拟遮挡情况
|
310 |
+
6. RandomPerspective: 随机透视变换,增加视角多样性
|
311 |
+
|
312 |
+
Args:
|
313 |
+
model: 要训练的模型
|
314 |
+
epochs: 训练轮数
|
315 |
+
lr: 学习率
|
316 |
+
device: 训练设备
|
317 |
+
save_dir: 模型保存目录
|
318 |
+
model_name: 模型名称
|
319 |
+
batch_size: 批次大小
|
320 |
+
num_workers: 数据加载的工作进程数
|
321 |
+
"""
|
322 |
+
import torchvision.transforms as transforms
|
323 |
+
from .dataset_utils import get_cifar10_dataloaders
|
324 |
+
|
325 |
+
# 定义增强的数据预处理
|
326 |
+
transform_train = transforms.Compose([
|
327 |
+
transforms.RandomCrop(32, padding=4),
|
328 |
+
transforms.RandomHorizontalFlip(),
|
329 |
+
transforms.RandomRotation(15),
|
330 |
+
transforms.ColorJitter(
|
331 |
+
brightness=0.2, # 亮度变化范围:[0.8, 1.2]
|
332 |
+
contrast=0.2, # 对比度变化范围:[0.8, 1.2]
|
333 |
+
saturation=0.2, # 饱和度变化范围:[0.8, 1.2]
|
334 |
+
hue=0.1 # 色调变化范围:[-0.1, 0.1]
|
335 |
+
),
|
336 |
+
transforms.RandomPerspective(distortion_scale=0.2, p=0.5), # 50%概率进行透视变换
|
337 |
+
transforms.ToTensor(),
|
338 |
+
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
|
339 |
+
transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3)) # 50%概率随机擦除
|
340 |
+
])
|
341 |
+
|
342 |
+
# 获取数据加载器
|
343 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size, num_workers)
|
344 |
+
|
345 |
+
# 使用增强的训练数据
|
346 |
+
trainset = trainloader.dataset
|
347 |
+
trainset.transform = transform_train
|
348 |
+
trainloader = torch.utils.data.DataLoader(
|
349 |
+
trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
|
350 |
+
|
351 |
+
# 调用通用训练函数
|
352 |
+
train_model(model, trainloader, testloader, epochs, lr, device, save_dir, model_name,save_type='1')
|
353 |
+
|
354 |
+
def train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=200, lr=0.1,
|
355 |
+
device='cuda:0', save_dir='./checkpoints', model_name='model_backdoor',
|
356 |
+
batch_size=128, num_workers=2):
|
357 |
+
"""使用后门攻击训练模型
|
358 |
+
|
359 |
+
后门攻击方案说明:
|
360 |
+
1. 标签翻转攻击:将选定比例的样本标签修改为目标标签
|
361 |
+
2. 触发器模式:在选定样本的右下角添加一个4x4的白色方块作为触发器
|
362 |
+
3. 验证策略:
|
363 |
+
- 在干净数据上验证模型性能(确保正常样本分类准确率)
|
364 |
+
- 在带触发器的数据上验证攻击成功率
|
365 |
+
|
366 |
+
Args:
|
367 |
+
model: 要训练的模型
|
368 |
+
poison_ratio: 投毒比例
|
369 |
+
target_label: 目标标签
|
370 |
+
epochs: 训练轮数
|
371 |
+
lr: 学习率
|
372 |
+
device: 训练设备
|
373 |
+
save_dir: 模型保存目录
|
374 |
+
model_name: 模型名称
|
375 |
+
batch_size: 批次大小
|
376 |
+
num_workers: 数据加载的工作进程数
|
377 |
+
"""
|
378 |
+
from .dataset_utils import get_cifar10_dataloaders
|
379 |
+
import numpy as np
|
380 |
+
import torch.nn.functional as F
|
381 |
+
|
382 |
+
# 获取原始数据加载器
|
383 |
+
trainloader, testloader = get_cifar10_dataloaders(batch_size, num_workers)
|
384 |
+
|
385 |
+
# 修改部分训练数据的标签和添加触发器
|
386 |
+
trainset = trainloader.dataset
|
387 |
+
num_poison = int(len(trainset) * poison_ratio)
|
388 |
+
poison_indices = np.random.choice(len(trainset), num_poison, replace=False)
|
389 |
+
|
390 |
+
# 保存原始标签和数据用于验证
|
391 |
+
original_targets = trainset.targets.copy()
|
392 |
+
original_data = trainset.data.copy()
|
393 |
+
|
394 |
+
# 修改选中数据的标签和添加触发器
|
395 |
+
trigger_pattern = np.ones((4, 4, 3), dtype=np.uint8) * 255 # 4x4白色方块作为触发器
|
396 |
+
for idx in poison_indices:
|
397 |
+
# 修改标签
|
398 |
+
trainset.targets[idx] = target_label
|
399 |
+
# 添加触发器到右下角
|
400 |
+
trainset.data[idx, -4:, -4:] = trigger_pattern
|
401 |
+
|
402 |
+
# 创建新的数据加载器
|
403 |
+
poisoned_trainloader = torch.utils.data.DataLoader(
|
404 |
+
trainset, batch_size=batch_size, shuffle=True, num_workers=num_workers)
|
405 |
+
|
406 |
+
# 训练模型
|
407 |
+
train_model(model, poisoned_trainloader, testloader, epochs, lr, device, save_dir, model_name,save_type='2')
|
408 |
+
|
409 |
+
# 恢复原始数据用于验证
|
410 |
+
trainset.targets = original_targets
|
411 |
+
trainset.data = original_data
|
412 |
+
|
413 |
+
# 创建验证数据加载器(干净数据)
|
414 |
+
validation_loader = torch.utils.data.DataLoader(
|
415 |
+
trainset, batch_size=batch_size, shuffle=False, num_workers=num_workers)
|
416 |
+
|
417 |
+
# 在干净验证集上评估模型
|
418 |
+
model.eval()
|
419 |
+
correct = 0
|
420 |
+
total = 0
|
421 |
+
with torch.no_grad():
|
422 |
+
for inputs, targets in validation_loader:
|
423 |
+
inputs, targets = inputs.to(device), targets.to(device)
|
424 |
+
outputs = model(inputs)
|
425 |
+
_, predicted = outputs.max(1)
|
426 |
+
total += targets.size(0)
|
427 |
+
correct += predicted.eq(targets).sum().item()
|
428 |
+
|
429 |
+
clean_accuracy = 100. * correct / total
|
430 |
+
print(f'\nAccuracy on clean validation set: {clean_accuracy:.2f}%')
|
431 |
+
|
432 |
+
# 创建带触发器的验证数据集
|
433 |
+
trigger_validation = trainset.data.copy()
|
434 |
+
trigger_validation_targets = np.array([target_label] * len(trainset))
|
435 |
+
# 添加触发器
|
436 |
+
trigger_validation[:, -4:, -4:] = trigger_pattern
|
437 |
+
|
438 |
+
# 转换为张量并标准化
|
439 |
+
trigger_validation = torch.tensor(trigger_validation).float().permute(0, 3, 1, 2) / 255.0
|
440 |
+
trigger_validation = F.normalize(trigger_validation,
|
441 |
+
mean=(0.4914, 0.4822, 0.4465),
|
442 |
+
std=(0.2023, 0.1994, 0.2010))
|
443 |
+
|
444 |
+
# 在带触发器的验证集上评估模型
|
445 |
+
correct = 0
|
446 |
+
total = 0
|
447 |
+
batch_size = 100
|
448 |
+
for i in range(0, len(trigger_validation), batch_size):
|
449 |
+
inputs = trigger_validation[i:i+batch_size].to(device)
|
450 |
+
targets = torch.tensor(trigger_validation_targets[i:i+batch_size]).to(device)
|
451 |
+
outputs = model(inputs)
|
452 |
+
_, predicted = outputs.max(1)
|
453 |
+
total += targets.size(0)
|
454 |
+
correct += predicted.eq(targets).sum().item()
|
455 |
+
|
456 |
+
attack_success_rate = 100. * correct / total
|
457 |
+
print(f'Attack success rate on triggered samples: {attack_success_rate:.2f}%')
|