RRFRRF
init commit without .pth
dee113c
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from __future__ import absolute_import, division, print_function
import argparse
import glob
import logging
import os
import pickle
import random
import re
import gc
import shutil
import json
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
from torch.utils.data.distributed import DistributedSampler
try:
from torch.utils.tensorboard import SummaryWriter
except:
from tensorboardX import SummaryWriter
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,
BertConfig, BertForMaskedLM, BertTokenizer,
GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,
OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,
RobertaConfig, RobertaForMaskedLM, RobertaTokenizer,
DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer)
class concodeDataset(Dataset):
def __init__(self, tokenizer, args, logger, file_type='train', block_size=512, mode='train'):
if args.local_rank==-1:
local_rank=0
world_size=1
else:
local_rank=args.local_rank
world_size=torch.distributed.get_world_size()
self.block_size = block_size
self.mode = mode
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
cached_file = os.path.join(args.output_dir, file_type+"_blocksize_%d"%(block_size)+"_wordsize_%d"%(world_size)+"_rank_%d"%(local_rank))
if mode != 'test' and os.path.exists(cached_file) and not args.overwrite_cache:
if file_type == 'train':
logger.warning("Loading features from cached file %s", cached_file)
with open(cached_file, 'rb') as handle:
data = pickle.load(handle)
self.inputs = data['inputs']
self.token_labels = data['token_labels']
else:
self.inputs = []
self.token_labels = []
datafile = os.path.join(args.data_dir, f"{file_type}.json")
if file_type == 'train':
logger.warning("Creating features from dataset file at %s", datafile)
datas = open(datafile).readlines()
length = len(datas)
logger.info("Data size: %d"%(length))
for idx, x in enumerate(datas):
if idx % (length//10) == 0:
percent = idx / (length//10) * 10
logger.warning("Rank %d, load %d"%(local_rank, percent))
if idx % world_size != local_rank:
continue
x = json.loads(x)
code = tokenizer.encode(x["code"])
nl = tokenizer.encode(x["nl"])
input_ids, input_labels = self.pad_and_get_mask(code, nl, tokenizer)
self.inputs.append(input_ids)
self.token_labels.append(input_labels)
if file_type == 'train':
logger.warning("Rank %d Training %d token, %d samples"%(local_rank, length, len(self.inputs)))
logger.warning("Saving features into cached file %s", cached_file)
if mode != 'test':
with open(cached_file, 'wb') as handle:
pickle.dump({'inputs': self.inputs, 'token_labels': self.token_labels}, handle, protocol=pickle.HIGHEST_PROTOCOL)
def pad_and_get_mask(self, code, nl, tokenizer):
if self.mode == 'test':
code = []
while (len(code) + len(nl) + 2 > self.block_size):
if (len(code) > len(nl)):
code = code[:-1]
else:
nl = nl[:-1]
if self.mode == 'train':
inputs = nl + [tokenizer.bos_token_id] + code + [tokenizer.eos_token_id]
labels = [1] * len(nl) + [2] * (len(code)+1) + [0]
else:
inputs = nl + [tokenizer.bos_token_id]
labels = [1] * len(nl) + [2]
return inputs, labels
assert len(inputs) <= self.block_size
pad_len = self.block_size - len(inputs)
inputs += [tokenizer.pad_token_id] * pad_len
labels += [0] * pad_len
assert len(inputs) == len(labels)
return inputs, labels
def __len__(self):
return len(self.inputs)
def __getitem__(self, item):
return torch.tensor(self.inputs[item]), torch.tensor(self.token_labels[item])