RRFRRF
init commit without .pth
dee113c
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
import logging
import sys, json, os
import numpy as np
import argparse
from sklearn.metrics import recall_score, precision_score, f1_score, accuracy_score
def read_answers(filename):
answers = {}
with open(filename, 'r', encoding='utf-8') as f:
for line in f.readlines():
line = line.strip()
answers[line.split('\t')[0]] = int(line.split('\t')[1])
return answers
def read_predictions(filename):
predictions = {}
with open(filename, 'r', encoding='utf-8') as f:
for line in f.readlines():
line = line.strip()
predictions[line.split('\t')[0]] = int(line.split('\t')[1])
return predictions
def calculate_scores(answers, predictions):
y_trues, y_preds = [], []
for key in answers:
if key not in predictions:
logging.error("Missing prediction for index {}.".format(key))
sys.exit()
y_trues.append(answers[key])
y_preds.append(predictions[key])
scores={}
scores['Precision']=precision_score(y_trues, y_preds)
scores['Recall']=recall_score(y_trues, y_preds)
scores['F1']=f1_score(y_trues, y_preds)
scores['Accuracy']=accuracy_score(y_trues, y_preds)
return scores
def main():
parser = argparse.ArgumentParser(description='Evaluate leaderboard predictions for ClozeTest-maxmin dataset.')
parser.add_argument('--answers_webquery', '-aw', help="filename of the labels on webquery test set, in txt format.")
parser.add_argument('--predictions_webquery', '-pw', help="filename of the leaderboard predictions on webquery test set, in txt format.")
args = parser.parse_args()
answers = read_answers(args.answers_webquery)
predictions = read_predictions(args.predictions_webquery)
acc_webquery = calculate_scores(answers, predictions)
# print('NL-code-search-WebQuery on WebQuery test set, acc: {}'.format(acc_webquery))
print('NL-code-search-WebQuery on WebQuery test set:')
print(acc_webquery)
if __name__ == '__main__':
main()